scholarly journals On Fluid Inertia Effects in Infinitely Wide Foil Bearings

1970 ◽  
Vol 92 (3) ◽  
pp. 490-493 ◽  
Author(s):  
A. Eshel

Equations for a foil over a lubricating film in which the effects of fluid inertia are taken into account are derived. Approximate solutions showing the effect of inertia and fluid compressibility are obtained. The effect of inertia is to increase considerably the fluid-film thickness.

1985 ◽  
Vol 107 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Y. Haruyama ◽  
T. Kazamaki ◽  
A. Mori ◽  
H. Mori

Based on the Navier-Stokes equations in which the pressure is assumed to be constant across the film thickness, various approximate solutions and the exact one for the dynamic performance of an infinitely wide, stepped thrust bearing in a laminar flow regime are presented under the assumption of a small harmonic vibration. From comparison of the approximate solutions with the exact one, it is concluded that some kind of averaging approach in which the time dependent term is treated exactly while the convective inertia terms are averaged out across the film thickness gives close approximations in a wide range of designing conditions, and that the other kind of averaging approach in which all the inertia terms including the time dependent term are averaged out across the film thickness gives fairly good approximations.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Prashant G. Khakse ◽  
Vikas M. Phalle ◽  
S. S. Mantha

The present paper deals with the performance analysis of a nonrecessed hole-entry hydrostatic/hybrid conical journal bearing with capillary restrictors. Finite element method has been used for solving the modified Reynolds equation governing the flow of lubricant in the clearance space of journal and bearing. The hole-entry hybrid conical journal bearing performance characteristics have been depicted for a wide range of radial load parameter (W¯r  = 0.25–1.5) with uniform distribution of holes at an angle of 30 deg in the circumferential direction. The numerically simulated results have been presented in terms of maximum fluid film pressure, minimum fluid film thickness, lubricant flow rate, direct fluid film stiffness coefficients, direct fluid film damping coefficients, and stability threshold speed. However, the proposed investigation of nonrecess hole-entry hybrid conical journal bearing shows important performance for bearing stiffness and minimum fluid film thickness at variable radial load and at given operating speed.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
J. C. Atwal ◽  
R. K. Pandey

Abstract This paper presents the performance behaviors (coefficient of friction, minimum film thickness, and pressure distributions) of a fluid film thrust bearing using a newly conceived micro-texture on pads. In the numerical investigation, the Reynolds equation has been discretized using the finite element formulation followed by the solution of algebraic equations employing the Fischer-Burmeister-Newton-Schur (FBNS) algorithm, which satisfies the mass-conservation phenomenon arising due to the commencement of cavitation in the lubricating film. The effects of parameters (micro-texture/pocket depth, circumferential/radial length of micro-texture and pocket, etc.) of new texture on the performance behaviors of the thrust bearing have been explored and presented herein for the range of input data. It has been found that the minimum film thickness has increased up to 48%, and the friction coefficient reduced up to 24% in comparison to conventional plain pad case.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Sina Hamzehlouia ◽  
Kamran Behdinan

This work represents a pressure distribution model for finite length squeeze film dampers (SFDs) executing small amplitude circular-centered orbits (CCOs) with application in high-speed turbomachinery design. The proposed pressure distribution model only accounts for unsteady (temporal) inertia terms, since based on order of magnitude analysis, for small amplitude motions of the journal center, the effect of convective inertia is negligible relative to unsteady (temporal) inertia. In this work, the continuity equation and the momentum transport equations for incompressible lubricants are reduced by assuming that the shapes of the fluid velocity profiles are not strongly influenced by the inertia forces, obtaining an extended form of Reynolds equation for the hydrodynamic pressure distribution that accounts for fluid inertia effects. Furthermore, a numerical procedure is represented to discretize the model equations by applying finite difference approximation (FDA) and to numerically determine the pressure distribution and fluid film reaction forces in SFDs with significant accuracy. Finally, the proposed model is incorporated into a simulation model and the results are compared against existing SFD models. Based on the simulation results, the pressure distribution and fluid film reaction forces are significantly influenced by fluid inertia effects even at small and moderate Reynolds numbers.


2005 ◽  
Vol 127 (2) ◽  
pp. 293-301
Author(s):  
Joon Hyun Kim ◽  
Joo-Hyun Kim

The study deals with the development of a thermohydrodynamic (THD) computational procedure for evaluating the pressure, temperature, and velocity distributions in fluid films with a very rough geometry. A parametric investigation is performed to predict the bearing behaviors in the lubricating film with the absorbed layers and their interfaces as determined by rough surfaces with Gaussian distribution. The layers are expressed as functions of the standard deviations of each surface to characterize flow patterns between both rough surfaces. Velocity variations and heat generation are assumed to occur in the central (shear) zone with the same bearing length and width. The coupled effect of the surface roughness and shear zone dependency on the hydrodynamic pressure and temperature has been found in the noncontact mode. The procedure confirms the numerically determined relationship between the pressure and film gap, provided that its roughness magnitude is smaller than the fluid film thickness.


Sign in / Sign up

Export Citation Format

Share Document