A Thermoelastohydrodynamic Analysis of a Finite Slider Bearing

1975 ◽  
Vol 97 (3) ◽  
pp. 450-460 ◽  
Author(s):  
S. M. Rohde ◽  
Kong Ping Oh

The thermoelastohydrodynamic (TEHD) behavior of a finite inclined-plane slider bearing is studied. The fluid film momentum, continuity, and energy equations are coupled to the heat conduction equations and the elasticity equations of the solid, and solved numerically. The elastic and thermal distortions of the solid as well as the variation of fluid properties with temperature are considered in the analysis. Several models for the bearing solids are treated.

1973 ◽  
Vol 95 (3) ◽  
pp. 298-307 ◽  
Author(s):  
H. A. Ezzat ◽  
S. M. Rohde

The thermohydrodynamic (THD) performance of finite inclined-plane slider bearings is studied. The fluid film momentum, continuity, and energy equations are coupled to the heat-conduction equations for the bearing solids, and solved numerically. The effect of bearing geometry, oil type, and inlet temperature on bearing performance is shown. The manner in which environmental temperature and heat transfer considerations influence the fluid film behavior is studied.


2013 ◽  
Vol 8-9 ◽  
pp. 225-234
Author(s):  
Dalia Sabina Cimpean

The present study is focused on the mixed convection fluid flow through a porous medium, when a different amount of nanoparticles is added in the base fluid. The nanofluid saturates the porous matrix and different situations of the flow between two walls are presented and discussed. Alternatively mathematical models are presented and discussed. A solution of a system which contains the momentum, Darcy and energy equations, together with the boundary conditions involved, is given. The behavior of different nanofluids, such thatAu-water, Ag-waterandFe-wateris graphically illustrated and compared with the previous results.The research target is to observe the substantial increase of the thermophysical fluid properties, when the porous medium issaturated by a nanofluid instead of a classical Newtonian fluid.


Author(s):  
D. Dowson ◽  
C. N. March

A thermohydrodynamic analysis is discussed which takes account of the general nature of the experimental observations in work which forms part of a programme of research designed to develop an improved understanding of better design procedures for journal bearings. The analysis considers compatible solutions of the Reynolds, energy, and heat conduction equations for two-dimensional conditions. It is shown that the solutions are in reasonable agreement with experimental findings. The two-dimensional solutions of the Reynolds and energy equations take full account of the variation of lubricant properties along and across the film. A very simple and approximate representation is used to estimate the temperature distribution in the bush, but the solutions present a reasonable estimate of bush and shaft temperatures. The ‘thermohydrodynamic’ or ‘heat conduction’ solution to journal bearing problems will provide intermediate, and it is hoped more realistic, results between the extreme ‘isothermal’ and ‘adiabatic’ conditions.


2014 ◽  
Vol 1052 ◽  
pp. 132-136
Author(s):  
Jaw Ren Lin

This paper investigates the dynamic characteristics of parabolic film slider bearing operating with ferrofluids. Comparing with the slider bearing of an inclined plane film, the parabolic film slider bearing operating with ferrofluids in the presence of external magnetic fields provide higher better dynamic stiffness and damping performances.


2010 ◽  
Vol 216 (1-4) ◽  
pp. 225-242 ◽  
Author(s):  
Asim Mukhopadhyay ◽  
Anandamoy Mukhopadhyay

2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 1813-1824 ◽  
Author(s):  
Pentyala Rao ◽  
Birendra Murmu ◽  
Santosh Agarwal

This paper presents the theoretical analysis of comparison of porous structures on the performance of a slider bearing with surface roughness in micropolar fluid film lubrication. The globular sphere model and Irmay?s capillary fissures model have been subject to investigations. The general Reynolds equation which incorporates randomized roughness structure with Stokes micropolar fluid is solved with suitable boundary conditions to get the pressure distribution, which is then used to obtain the load carrying capacity. The graphical representations suggest that the globular sphere model scores over the Irmay?s capillary fissures model for an overall improved performance. The numerical computations of the results show that, the act of the porous structures on the performance of a slider bearing is improved for the micropolar lubricants as compared to the corresponding Newtonian lubricants.


Author(s):  
Prawal Sinha ◽  
Getachew Adamu

This paper analyses the thermal and roughness effects on different characteristics of an infinitely long tilted pad slider bearing considering heat conduction through both the pad and slider. The roughness is assumed to be stochastic, Gaussian randomly distributed. Density and viscosity are assumed to be temperature dependent. The irregular domain of the fluid due to roughness is mapped to a regular domain so that the numerical method can be easily applied. The modified Reynolds equation, momentum equation, continuity equation, energy equation and the heat conduction equations on the pad and slider are coupled and solved using finite difference method to yield various bearing characteristics. The solutions with respect to different pad and slider boundary conditions are elaborated through tables and figures.


1975 ◽  
Vol 97 (1) ◽  
pp. 94-100 ◽  
Author(s):  
T. S. Yu ◽  
A. Z. Szevi

In this approximate analysis of laminar journal bearing operations both the momentum and the energy equations are two dimensional, the shaft operates at a constant temperature and the bearing conducts heat in the radial direction only. Via the last of these assumptions, the equation of heat conduction is eliminated from consideration. The remaining equations are solved by a numerical iteration method. A parametric study of therohydrodynamic journal bearing operations is performed and design charts are given for a 100 deg arc bearing.


Sign in / Sign up

Export Citation Format

Share Document