Axisymmetric Plane Stress Problems in Anisotropic Plasticity

1969 ◽  
Vol 36 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Wei Hsuin Yang

Based on an established theory of anisotropic plasticity, a class of axisymmetric plane stress problems is solved for sheet metals which harden according to a power law and are isotropic in their plane. A new method of solution, the stress plane method, is used. The analytic solutions for the problems considered are obtained in the stress plane. The stress-concentration factors introduced by a hole or a rigid inclusion at the center of an infinite sheet are obtained for arbitrary degree of anisotropy and strain-hardening characteristics. The influence of anisotropy and strain-hardening on the deep-drawing problem is also studied. The results show that the type of anisotropy and strain-hardening assumed always influences the stress concentration and drawability in a favorable way.

2004 ◽  
Vol 1-2 ◽  
pp. 153-158 ◽  
Author(s):  
S. Quinn ◽  
Janice M. Dulieu-Barton

A review of the Stress Concentration Factors (SCFs) obtained from normal and oblique holes in thick flat plates loaded in uniaxial tension has been conducted. The review focuses on values from the plate surface and discusses the ramifications of making a plane stress assumption.


1978 ◽  
Vol 100 (1) ◽  
pp. 2-9 ◽  
Author(s):  
M. R. Gecit ◽  
F. Erdogan

In this paper the effect of the thickness and the elastic properties of the adhesive layers in laminated structures is considered. The structure is assumed to consist of two sets of periodically arranged dissimilar layers which may contain cracks perpendicular to the interfaces. The crack problem is solved under the assumption of plane strain or generalized plane stress and by using two different models for the adhesive layers. In the first model the adhesive layer is approximated by a combination of tensile and shear springs. In the second the adhesive layer is considered to be an elastic continuum, hence involving no approximating assumptions. The results regarding the stress intensity and stress concentration factors obtained from these two models and that found by ignoring the adhesive layers are presented and some comparisons are made.


1954 ◽  
Vol 21 (1) ◽  
pp. 42-44
Author(s):  
H. D. Conway

Abstract Two plane stress problems of elliptical holes in infinite orthotropic sheets are treated: (a) Hole loaded by a pair of concentrated forces acting at the ends of the major or minor axis, and (b) hole in plate which is subjected to uniform tension. The solutions are obtained in a simple manner by transformation from corresponding problems in which the holes are circular. Closed-form expressions are obtained for the stress-concentration factors.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 546
Author(s):  
Krzysztof L. Molski ◽  
Piotr Tarasiuk

The paper deals with the problem of stress concentration at the weld toe of a plate T-joint subjected to axial, bending, and shearing loading modes. Theoretical stress concentration factors were obtained from numerical simulations using the finite element method for several thousand geometrical cases, where five of the most important geometrical parameters of the joint were considered to be independent variables. For each loading mode—axial, bending, and shearing—highly accurate closed form parametric expression has been derived with a maximum percentage error lower than 2% with respect to the numerical values. Validity of each approximating formula covers the range of dimensional proportions of welded plate T-joints used in engineering applications. Two limiting cases are also included in the solutions—when the weld toe radius tends to zero and the main plate thickness becomes infinite.


Author(s):  
R E Cornwell

There are numerous situations in machine component design in which curved beams with cross-sections of arbitrary geometry are loaded in the plane of curvature, i.e. in flexure. However, there is little guidance in the technical literature concerning how the shear stresses resulting from out-of-plane loading of these same components are effected by the component's curvature. The current literature on out-of-plane loading of curved members relates almost exclusively to the circular and rectangular cross-sections used in springs. This article extends the range of applicability of stress concentration factors for curved beams with circular and rectangular cross-sections and greatly expands the types of cross-sections for which stress concentration factors are available. Wahl's stress concentration factor for circular cross-sections, usually assumed only valid for spring indices above 3.0, is shown to be applicable for spring indices as low as 1.2. The theory applicable to the torsion of curved beams and its finite-element implementation are outlined. Results developed using the finite-element implementation agree with previously available data for circular and rectangular cross-sections while providing stress concentration factors for a wider variety of cross-section geometries and spring indices.


1972 ◽  
Vol 94 (3) ◽  
pp. 815-824 ◽  
Author(s):  
J. C. Gerdeen

An approximate theoretical analysis is presented for the determination of stress concentration factors in thick walled cylinders with sideholes and crossholes. The cylinders are subjected to both internal pressure and external shrink-fit pressure. Stress concentration factors are plotted as functions of the geometrical ratios of outside diameter-to-bore diameter, and bore diameter-to-sidehole diameter. Theoretical results are compared to experimental values available in the literature and results of experiments described in a separate paper.


Sign in / Sign up

Export Citation Format

Share Document