Flow of Greases Under the Action of Complex Shear

1968 ◽  
Vol 90 (3) ◽  
pp. 604-607 ◽  
Author(s):  
G. V. Vinogradov ◽  
A. A. Mamakov

Experiments were performed in a coaxial cylinder viscometer in which there were realized separately and simultaneously flows of grease and bright stock (Newtonian fluid) in the axial and peripheral direction. The latter was at uniform shear stress field. The effect of peripheral on axial-flows was a great decrease in resistance toward deformation in the axial direction. This is a very important peculiarity of greases, which are non-Newtonian media, when considering their flow in labyrinth boxes and some other devices. The effect of axial on peripheral flow showed somewhat increased resistance toward the latter. Such behavior was attributed to continuous inflow of fresh grease into the annular space where it did not remain long enough for structural destruction to reach a limiting value.

Author(s):  
Subhasis Mukherjee ◽  
Abhijit Dasgupta

There are various specimen configurations available in the literature for characterizing the mechanical behavior of solder interconnect materials. An ideal test specimen should use a simple geometry to minimize the complexity of the stress analysis and which produces a uniform material response throughout the test material. In the thermo-mechanical micro scale (TMM) test used in this study, we use a simple, notched shear specimen, based on a concept originally proposed by Iosipescu [1967] [1], which produces a very uniform shear stress field in the solder joint volume [Reinikainen et al., 1998] [2]. Our modified Iosipescu specimen comprises of two oxygen free, high conductivity (OFHC) copper platens soldered together and loaded in simple shear. The solder joint in this specimen is only 180 microns wide to capture the length scale effects of functional solder interconnects. This study examines the effects of dimensional variabilities of this modified Iosipescu specimen on the shear stress distribution in the solder joint. Variabilities encountered in these specimens include: (i) fillets at the V-notches, caused by excess solder; (ii) offset between the two copper platens along the loading direction; (iii) taper of the solder joint due to lack of parallelism of the edges of the copper platens; and (iv) misalignment between the specimen centerline and loading axis of the TMM test frame due to mounting variability. Detailed parametric studies of these four dimensional variations in the TMM specimen are conducted using a simple two-dimensional elastic-plastic finite element model. The uniformity of the shear stress field in the specimen is investigated and the variation in the derived stress-strain curves is examined, as a function of the dimensional variabilities described above.


1956 ◽  
Vol 23 (2) ◽  
pp. 284-286
Author(s):  
J. N. Goodier ◽  
W. E. Jahsman

Abstract Detailed results are found for two plane-stress problems of an elastic plate with a hole from which a symmetrical disturbance is propagated. In the first a uniform shear stress is suddenly applied and maintained at the hole. In the second a uniform (rotary) velocity is suddenly applied and maintained. The subsequent motion is entirely rotary and involves shear stress only. The problems are mathematically analogous to those of symmetrical pressure and radial velocity at the hole, already solved by Kromm, and his analysis is followed. The existence of a similar analogy in the statical cases is well known.


1981 ◽  
Vol 21 (06) ◽  
pp. 679-686 ◽  
Author(s):  
W.H. Seitzer

Abstract In a concentric cylinder viscometer. Utah shale oils have different characteristics, both at equilibrium flow and during start-up from rest, depending on whether the wax has crystallized as needles or spherulites. Compared with waxy crude oils, which are thixotropic, shale oil had the added rheological property of being antithixotropic. Introduction The most likely liquid synthetic fuel to be produced initially in the U.S. will be raw shale oil from western oil shale. This abundant resource is located principally in the western Rocky Mountain states of Colorado. Utah. and Wyoming (Fig. 1). Ultimate commercial production probably will be transported to marketing, distribution, and refining centers by pipeline. It has been reported that Utah shale oils produced by the Union "B" and Paraho DH retorting processes gave similar physical and chemical properties. Some properties of the two Utah shale oils are given in Table 1. The only major difference is that the Union shale oil has a pour point of - 1 degree C compared with a pour point of 25 degrees C for the Paraho oil. Wax Crystallization The difference in the pour points of the oils from the Utah shale retorted by Union Oil Co of California and Paraho is caused mainly by the difference in how the wax in the respective oils crystallizes. In the high- pour-point (25 degrees C) Paraho DK oil, the wax, under a microscope, appears as fine (1 to 10 m) needles, as expected for normal paraffins. However, the wax in the low-pour-point (−1 degrees C) Union oil forms small spherulites.Wax spherulites have not been reported before: however, this type of crystal is seen commonly in polymer. Spherulites show up as round areas containing a maltese cross when observed between crossed polars under a microscope.Photomicrographs of these crystals are shown in Figs. 2 and 3. The former, showing spherulites, is of the Union oil. In contrast, they are very different from the customary needles as typified by the Paraho oil in the latter micrograph. Presumably, these highly ordered spheres are made up of wax needles grown out radially from the center as described by Hartshorne and Stuart. The polarized light is scattered only by those needles not parallel nor perpendicular to the plane of polarization. Viscometer Measurements To understand the effect of these spherulites on the flow characteristics of raw shale oil at flow conditions expected in a long-distance pipeline, typical stress-rate measurements were made in a rotating cylinder viscometer, the Haake Rotovisco RV3 with MK500 measuring head and MVI coaxial cylinder sensor having an 82-mm cup and radii ratio of 0.95. This equipment has provisions for varying shear rate continuously at selected values down to 23.4 sec(−1)/min and can produce and record shear stress as a function of either shear rate or time. Calibration of the sensor was verified with a sucrose/water solution at several temperatures.Changes in temperature always were made from lower to higher to keep the sensor full of oil. Also, the shear-stress/ shear-rate curves were obtained by starting at high shear, down to zero, and then back up. SPEJ P. 679^


1972 ◽  
Vol 11 (3-4) ◽  
pp. 275-285 ◽  
Author(s):  
B. Enoksson

2014 ◽  
Vol 1 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Haskell V. Hart

Mechanical resonance dispersion is the inelastic response of a solid to a periodic shear stress. Instead of the elastic Young's Modulus, the phenomenon is described by both a real J', and an imaginary J'' component of complex shear compliance, corresponding to in phase and out of phase strain responses, respectively. The experimental results are plots of J' and J'' vs. frequency, which are typically in the audiofrequency range of 10 - 5600 Hz. Resonances are observed as maxima in J'' and inversions in J' at frequencies corresponding to modes of plastic deformation, which are much lower frequencies (audiofrequency range) than elastic normal modes. The theoretical explanation of Edwin R. Fitzgerald involves particle waves and momentum transfer and leads to a particle-in-a-box frequency formula for these inelastic modes. Unfortunately, most of his and other published raw data were never analyzed by this model. The purpose of this article is to apply this formula to previously uninterpreted resonance dispersion curves and to address some of the earlier criticism of Fitzgerald's work. Results of these calculations support the Fitzgerald Theory to a high degree, demonstrate the importance of impurities and chemical analysis, largely mollify previous criticisms, and suggest the possibility of a new particle wave mass spectroscopy at great distances.


2001 ◽  
Vol 280 (3) ◽  
pp. H1256-H1263 ◽  
Author(s):  
Kelly L. Karau ◽  
Gary S. Krenz ◽  
Christopher A. Dawson

A bifurcating arterial system with Poiseuille flow can function at minimum cost and with uniform wall shear stress if the branching exponent ( z) = 3 [where z is defined by ( D 1) z = ( D 2) z + ( D 3) z ; D 1 is the parent vessel diameter and D 2 and D 3 are the two daughter vessel diameters at a bifurcation]. Because wall shear stress is a physiologically transducible force, shear stress-dependent control over vessel diameter would appear to provide a means for preserving this optimal structure through maintenance of uniform shear stress. A mean z of 3 has been considered confirmation of such a control mechanism. The objective of the present study was to evaluate the consequences of a heterogeneous distribution of z values about the mean with regard to this uniform shear stress hypothesis. Simulations were carried out on model structures otherwise conforming to the criteria consistent with uniform shear stress when z = 3 but with varying distributions of z. The result was that when there was significant heterogeneity in z approaching that found in a real arterial tree, the coefficient of variation in shear stress was comparable to the coefficient of variation in z and nearly independent of the mean value of z. A systematic increase in mean shear stress with decreasing vessel diameter was one component of the variation in shear stress even when the mean z = 3. The conclusion is that the influence of shear stress in determining vessel diameters is not, per se, manifested in a mean value of z. In a vascular tree having a heterogeneous distribution in zvalues, a particular mean value of z (e.g., z = 3) apparently has little bearing on the uniform shear stress hypothesis.


Biomaterials ◽  
2003 ◽  
Vol 24 (21) ◽  
pp. 3757-3764 ◽  
Author(s):  
Yuqing Wan ◽  
Jian Yang ◽  
Junlin Yang ◽  
Jianzhong Bei ◽  
Shenguo Wang

1993 ◽  
Vol 60 (4) ◽  
pp. 593-601 ◽  
Author(s):  
Jozef Korolczuk

SummaryA computerized, coaxial cylinder viscometer, controlled by a function synthesizer, was used to study the stress characteristics of acid fresh cheeses containing 7·5–8·5% protein and 0–20% fat in total solids, as a function of shearing time (0–3600 s) and of shear rate (0–4·5 s–1). For a given shear rate the stress diminished with time, following an exponential equation. The hypothetical final stress level (Sf for the shearing time t = ∞) represented about half its initial value (Si). For four cheese samples, the time required for the stress to become equal to Sf + (Sf – Sf)/e was 340–560 s. The stress-shear rate relation indicated shear thinning behaviour. The effect of shearing time showed that the material was thixotropic. The cheeses exhibited plastic flow. The initial and final stress levels were hyperbolic functions of the shear rate. Bingham final yield stress (for t = ∞) was 14–50 Pa. It was 15–25% higher for increasing than for decreasing shear rate. Bingham viscosity (for t = ∞) was between 2 and 6 Pa s. It was 10–20% higher for decreasing shear rate. The initial level of Bingham viscosity was ˜ 30% higher than its final value.


2011 ◽  
Vol 219 (2) ◽  
pp. 499-509 ◽  
Author(s):  
Katharina Urschel ◽  
Christoph D. Garlichs ◽  
Werner G. Daniel ◽  
Iwona Cicha
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document