Rough Surface Effects on Cavitation Inception

1968 ◽  
Vol 90 (2) ◽  
pp. 249-261 ◽  
Author(s):  
Roger E. A. Arndt ◽  
A. T. Ippen

Cavitation inception and the associated bubble dynamics in turbulent boundary layers adjacent to surfaces roughened with triangular grooves is investigated in a two-dimensional recirculating water tunnel. The experiments result in the significant conclusion that the cavitation inception index is directly related to the skin friction coefficient for both smooth and rough boundaries. Cavitation is observed to occur away from the wall approximately in the center of the boundary layer, and is apparently the result of negative peaks in static pressure having a magnitude which exceeds 5 times the expected value of root mean square wall pressure. Mean velocity and skin friction data are correlated with existing theory for equilibrium boundary layers.

1983 ◽  
Vol 27 (03) ◽  
pp. 147-157 ◽  
Author(s):  
A. J. Smits ◽  
N. Matheson ◽  
P. N. Joubert

This paper reports the results of an extensive experimental investigation into the mean flow properties of turbulent boundary layers with momentum-thickness Reynolds numbers less than 3000. Zero pressure gradient and favorable pressure gradients were studied. The velocity profiles displayed a logarithmic region even at very low Reynolds numbers (as low as Rθ = 261). The results were independent of the leading-edge shape, and the pin-type turbulent stimulators performed well. It was found that the shape and Clauser parameters were a little higher than the correlation proposed by Coles [10], and the skin friction coefficient was a little lower. The skin friction coefficient behavior could be fitted well by a simple power-law relationship in both zero and favorable pressure gradients.


2019 ◽  
Vol 862 ◽  
pp. 781-815 ◽  
Author(s):  
Y. Kuwata ◽  
Y. Kawaguchi

Lattice Boltzmann direct numerical simulation of turbulent open-channel flows over randomly distributed hemispheres at $Re_{\unicode[STIX]{x1D70F}}=600$ is carried out to reveal the influence of roughness parameters related to a probability density function of rough-surface elevation on turbulence by analysing the spatial and Reynolds- (double-) averaged Navier–Stokes equation. This study specifically concentrates on the influence of the root-mean-square roughness and the skewness, and profiles of turbulence statistics are compared by introducing an effective wall-normal distance defined as a wall-normal integrated plane porosity. The effective distance can completely collapse the total shear stress outside the roughness sublayer, and thus the similarity of the streamwise mean velocity is clearer by introducing the effective distance. In order to examine the influence of the root-mean-square roughness and the skewness on dynamical effects that contribute to an increase in the skin friction coefficient, the triple-integrated double-averaged Navier–Stokes equation is analysed. The main contributors to the skin friction coefficient are found to be turbulence and drag force. The turbulence contribution increases with the root-mean-square roughness and/or the skewness. The drag force contribution, on the other hand, increases in particular with the root-mean-square roughness whereas an increase in the skewness does not increase the drag force contribution because it does not necessarily increase the surface area of the roughness elements. The contribution of the mean velocity dispersion induced by spatial inhomogeneity of the rough surfaces substantially increases with the root-mean-square roughness. A linear correlation is confirmed between the root-mean-square roughness and the equivalent roughness while the equivalent roughness monotonically increases with the skewness. A new correlation function based on the root-mean-square roughness and the skewness is developed with the available experimental and direct numerical simulation data, and it is confirmed that the developed correlation reasonably predicts the equivalent roughness of various types of real rough surfaces.


2011 ◽  
Vol 133 (11) ◽  
Author(s):  
N. Rostamy ◽  
D. J. Bergstrom ◽  
D. Sumner ◽  
J. D. Bugg

The effect of surface roughness on the mean velocity and skin friction characteristics of a plane turbulent wall jet was experimentally investigated using laser Doppler anemometry. The Reynolds number based on the slot height and exit velocity of the jet was approximately Re = 7500. A 36-grit sheet was used to create a transitionally rough flow (44 < ks+ < 70). Measurements were carried out at downstream distances from the jet exit ranging from 20 to 80 slot heights. Both conventional and momentum-viscosity scaling were used to analyze the streamwise evolution of the flow on smooth and rough walls. Three different methods were employed to estimate the friction velocity in the fully developed region of the wall jet, which was then used to calculate the skin friction coefficient. This paper provides new experimental data for the case of a plane wall jet on a transitionally rough surface and uses it to quantify the effects of roughness on the momentum field. The present results indicate that the skin friction coefficient for the rough-wall case compared to a smooth wall increases by as much as 140%. Overall, the study suggests that for the transitionally rough regime considered in the present study, roughness effects are significant but mostly confined to the inner region of the wall jet.


1995 ◽  
Vol 117 (3) ◽  
pp. 535-538 ◽  
Author(s):  
James Sucec

The inner law for transpired turbulent boundary layers is used as the velocity profile in the integral form of the x momentum equation. The resulting ordinary differential equation is solved numerically for the skin friction coefficient, as well as boundary layer thicknesses, as a function of position along the surface. Predicted skin friction coefficients are compared to experimental data and exhibit reasonably good agreement with the data for a variety of different cases. These include blowing and suction, with constant blowing fractions F for both mild and severe acceleration. Results are also presented for more complicated cases where F varies with x along the surface.


Author(s):  
Pranav Joshi ◽  
Joseph Katz

The goal of this research is to study the effect of favorable pressure gradient (FPG) on the near wall structures of a turbulent boundary layer on a smooth wall. 2D-PIV measurements have been performed in a sink flow, initially at a coarse resolution, to characterize the development of the mean flow and (under resolved) Reynolds stresses. Lack of self-similarity of mean velocity profiles shows that the boundary layer does not attain the sink flow equilibrium. In the initial phase of acceleration, the acceleration parameter, K = v/U2dU/dx, increases from zero to 0.575×10−6, skin friction coefficient decreases and mean velocity profiles show a log region, but lack universality. Further downstream, K remains constant, skin friction coefficient increases and the mean velocity profiles show a second log region away from the wall. In the initial part of the FPG region, all the Reynolds stress components decrease over the entire boundary layer. In the latter phase, they continue to decrease in the middle of the boundary layer, and increase significantly close to the wall (below y∼0.15δ), where they collapse when normalized with the local freestream velocity. Turbulence production and wallnormal transport, scaled with outer units, show self-similar profiles close to the wall in the constant K region. Spanwise-streamwise plane data shows evidence of low speed streaks in the log layer, with widths scaling with the boundary layer thickness.


1999 ◽  
Vol 121 (3) ◽  
pp. 684-689 ◽  
Author(s):  
Ram Balachandar ◽  
Shyam S. Ramachandran

The results of an experimental investigation of turbulent boundary layers in shallow open channel flows at low Reynolds numbers are presented. The study was aimed at extending the database toward lower values of Reynolds number. The data presented are primarily concerned with the longitudinal mean velocity, turbulent-velocity fluctuations, boundary layer shape parameter and skin friction coefficient for Reynolds numbers based on the momentum thickness (Reθ) ranging from 180 to 480. In this range, the results of the present investigation in shallow open channel flows indicate a lack of dependence of the von Karman constant κ on Reynolds number. The extent to which the mean velocity data overlaps with the log-law decreases with decreasing Reθ. The variation of the strength of the wake with Reθ is different from the trend proposed earlier by Coles.


Author(s):  
Hassan M Nagib ◽  
Kapil A Chauhan ◽  
Peter A Monkewitz

Flat plate turbulent boundary layers under zero pressure gradient at high Reynolds numbers are studied to reveal appropriate scale relations and asymptotic behaviour. Careful examination of the skin-friction coefficient results confirms the necessity for direct and independent measurement of wall shear stress. We find that many of the previously proposed empirical relations accurately describe the local C f behaviour when modified and underpinned by the same experimental data. The variation of the integral parameter, H , shows consistent agreement between the experimental data and the relation from classical theory. In accordance with the classical theory, the ratio of Δ and δ asymptotes to a constant. Then, the usefulness of the ratio of appropriately defined mean and turbulent time-scales to define and diagnose equilibrium flow is established. Next, the description of mean velocity profiles is revisited, and the validity of the logarithmic law is re-established using both the mean velocity profile and its diagnostic function. The wake parameter, Π , is shown to reach an asymptotic value at the highest available experimental Reynolds numbers if correct values of logarithmic-law constants and an appropriate skin-friction estimate are used. The paper closes with a discussion of the Reynolds number trends of the outer velocity defect which are important to establish a consistent similarity theory and appropriate scaling.


1961 ◽  
Vol 28 (3) ◽  
pp. 323-329 ◽  
Author(s):  
Eva M. Winkler

Naturally turbulent boundary layers on a cooled flat plate have been investigated at several distances from the leading edge of the plate at a Mach number of 5.2 for three rates of steady-state heat transfer to the surface. Measurements of Pitot and static pressures and of total and wall temperatures made it possible to compute velocity profiles, static-temperature profiles, and boundary-layer parameters without resorting to assumptions. The data demonstrate that the Reynolds analogy between skin friction and heat transfer is valid for all conditions of the present experiments. With increasing rate of heat transfer to the surface, the skin-friction coefficient was found to decrease, a phenomenon opposite to that predicted by theories and empirical relations. On the basis of the present data and other published results of compressible and incompressible turbulent boundary-layer skin friction, a simple relation was devised which describes closely the variation of the skin-friction coefficient with Mach number, heat-transfer rate, and momentum-thickness Reynolds number.


1985 ◽  
Vol 157 ◽  
pp. 405-448 ◽  
Author(s):  
J. H. Watmuff ◽  
H. T. Witt ◽  
P. N. Joubert

Measurements are presented for low-Reynolds-number turbulent boundary layers developing in a zero pressure gradient on the sidewall of a duct. The effect of rotation on these layers is examined. The mean-velocity profiles affected by rotation are described in terms of a common universal sublayer and modified logarithmic and wake regions.The turbulence quantities follow an inner and outer scaling independent of rotation. The effect appears to be similar to that, of increased or decreased layer development. Streamwise-energy spectra indicate that, for a given non-dimensional wall distance, it is the low-wavenumber spectral components alone that are affected by rotation.Large spatially periodic spanwise variations of skin friction are observed in the destabilized layers. Mean-velocity vectors in the cross-stream plane clearly show an array of vortex-like structures which correlate strongly with the skin-friction pattern. Interesting properties of these mean-flow structures are shown and their effect on Reynolds stresses is revealed. Near the duct centreline, where we have measured detailed profiles, the variations are small and there is a reasonable momentum balance.Large-scale secondary circulations are also observed but the strength of the pattern is weak and it appears to be confined to the top and bottom regions of the duct. The evidence suggests that it has minimally affected the flow near the duct centreline where detailed profiles were measured.


Sign in / Sign up

Export Citation Format

Share Document