A Study on Reynolds Number Effects in Turbomachines

1964 ◽  
Vol 86 (3) ◽  
pp. 227-235 ◽  
Author(s):  
O. E. Balje´

Typical space power units have a tendency to encounter low Reynolds numbers in the last turbine stages. Comprehensive test data on the effect of low Reynolds numbers on the efficiency of turbomachines are lacking. An attempt is made to assess this influence, using conventional aerodynamic arguments. By distinguishing between viscous and nonviscous losses some tentative values have been calculated which are in fair agreement with the few available test data. These considerations indicate that the stage pressure ratio and the specific speed affect the Reynolds number influence significantly.

2014 ◽  
Vol 26 (11) ◽  
pp. 115107 ◽  
Author(s):  
S. Wang ◽  
Y. Zhou ◽  
Md. Mahbub Alam ◽  
H. Yang

1992 ◽  
Vol 236 ◽  
pp. 579-605 ◽  
Author(s):  
R. A. Antonia ◽  
M. Teitel ◽  
J. Kim ◽  
L. W. B. Browne

Low-Reynolds-number effects are observed in the inner region of a fully developed turbulent channel flow, using data obtained either from experiments or by direct numerical simulations. The Reynolds-number influence is observed on the turbulence intensities and to a lesser degree on the average production and dissipation of the turbulent energy. In the near-wall region, the data confirm Wei & Willmarth's (1989) conclusion that the Reynolds stresses do not scale on wall variables. One of the reasons proposed by these authors to account for this behaviour, namely the ‘geometry’ effect or direct interaction between inner regions on opposite walls, was investigated in some detail by introducing temperature at one of the walls, both in experiment and simulation. Although the extent of penetration of thermal excursions into the opposite side of the channel can be significant at low Reynolds numbers, the contribution these excursions make to the Reynolds shear stress and the spanwise vorticity in the opposite wall region is negligible. In the inner region, spectra and co-spectra of the velocity fluctuations u and v change rapidly with the Reynolds number, the variations being mainly confined to low wavenumbers in the u spectrum. These spectra, and the corresponding variances, are discussed in the context of the active/inactive motion concept and the possibility of increased vortex stretching at the wall. A comparison is made between the channel and the boundary layer at low Reynolds numbers.


1987 ◽  
Vol 109 (4) ◽  
pp. 541-544 ◽  
Author(s):  
R. A. Strub ◽  
L. Bonciani ◽  
C. J. Borer ◽  
M. V. Casey ◽  
S. L. Cole ◽  
...  

This work is the result of an investigation based on numerous test data supplied by major compressor manufacturers in USA and in Europe. The main objective of the work is to propose improved formulae for the correction of the efficiency, the head, and the flow as influenced by the Reynolds number variation between workshop tests and specified conditions, carried out with the same machine. Tests on hand have shown that a sufficiently good correlation between measured and predicted values can be obtained with the proposed formulae. In addition a proposal is made for the allowable range, taking into account the inherent limitations for accurate testing at low Reynolds numbers. As a conclusion to this study it is recommended that the proposed formulae and allowable range be reviewed by the ASME, the ISO, or any other appropriate associations for adoption in revised test codes for centrifugal compressors.


2021 ◽  
Vol 15 (2) ◽  
pp. 8205-8218
Author(s):  
A. A. Mehraban ◽  
Mohammad Hassan Djavareshkian

Present study experimentally investigates the effects of ground clearance and Reynolds number on aerodynamic coefficients of smooth and sinusoidal leading-edge wings. Wind tunnel tests are conducted over a wide range of angles of attack from zero to 36 degrees, low Reynolds numbers of 30,000, 45,000 and 60,000, and also ground clearances of 0.5, 1 and ∞. Results showed that reduction of ground clearance and increment of Reynolds number cause the lift coefficient and the lift to drag ratio of both wings to be enhanced. Furthermore, the effects of Reynolds number and ground clearance on the smooth leading-edge wing are more than the sinusoidal leading-edge one. In addition, the sinusoidal leading-edge wing shows an excellent performance in the poststall region due to producing a higher lift and also by delaying the stall angle compared to the smooth leading-edge wing.


1984 ◽  
Vol 106 (3) ◽  
pp. 298-306 ◽  
Author(s):  
I. P. Castro

This paper documents some of the effects of free stream turbulence on the mean flow properties of turbulent boundary layers in zero pressure gradients. Attention is concentrated on flows for which the momentum thickness Reynolds number is less than about 2000. Direct Reynolds number effects are therefore significant and it is shown that such effects reduce as the level of free stream turbulence rises. A modification to Hancock’s [1] empirical correlation relating the fractional increase in skin friction at constant Reynolds number to a free stream turbulence parameter containing a dependence on both intensity and length scale is proposed. While this modification has the necessary characteristic of being a function of the free stream turbulence parameters as well as the Reynolds number, it is argued that the relative importance of intensity and length scale changes at low Reynolds numbers; the data are not inconsistent with this idea. The experiments cover the range 500 ⪝ Reθ ⪝ 2500, u′/Ue ⪝ 0.07, 0.8 ⪝ Le/δ ⪝ 2.9, where u′/Ue is the free stream turbulence intensity and Le/δ is the ratio of the dissipation length scale of the free stream turbulence to the 99 percent thickness of the boundary layer.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


2000 ◽  
Author(s):  
Ajit Pal Singh ◽  
S. H. Winoto ◽  
D. A. Shah ◽  
K. G. Lim ◽  
Robert E. K. Goh

Abstract Performance characteristics of some low Reynolds number airfoils for the use in micro air vehicles (MAVs) are computationally studied using XFOIL at a Reynolds number of 80,000. XFOIL, which is based on linear-vorticity stream function panel method coupled with a viscous integral formulation, is used for the analysis. In the first part of the study, results obtained from the XFOIL have been compared with available experimental data at low Reynolds numbers. XFOIL is then used to study relative aerodynamic performance of nine different airfoils. The computational analysis has shown that the S1223 airfoil has a relatively better performance than other airfoils considered for the analysis.


2012 ◽  
Vol 707 ◽  
pp. 37-52 ◽  
Author(s):  
J. Sznitman ◽  
L. Guglielmini ◽  
D. Clifton ◽  
D. Scobee ◽  
H. A. Stone ◽  
...  

AbstractWe investigate experimentally the characteristics of the flow field that develops at low Reynolds numbers ($\mathit{Re}\ll 1$) around a sharp $9{0}^{\ensuremath{\circ} } $ corner bounded by channel walls. Two-dimensional planar velocity fields are obtained using particle image velocimetry (PIV) conducted in a towing tank filled with a silicone oil of high viscosity. We find that, in the vicinity of the corner, the steady-state flow patterns bear the signature of a three-dimensional secondary flow, characterized by counter-rotating pairs of streamwise vortical structures and identified by the presence of non-vanishing transverse velocities (${u}_{z} $). These results are compared to numerical solutions of the incompressible flow as well as to predictions obtained, for a similar geometry, from an asymptotic expansion solution (Guglielmini et al., J. Fluid Mech., vol. 668, 2011, pp. 33–57). Furthermore, we discuss the influence of both Reynolds number and aspect ratio of the channel cross-section on the resulting secondary flows. This work represents, to the best of our knowledge, the first experimental characterization of the three-dimensional flow features arising in a pressure-driven flow near a corner at low Reynolds number.


Author(s):  
Amir Hossein Birjandi ◽  
Eric Bibeau

A four-bladed, squirrel-cage, and scaled vertical kinetic turbine was designed, instrumented and tested in the water tunnel facilities at the University of Manitoba. With a solidity of 1.3 and NACA0021 blade profile, the turbine is classified as a high solidity model. Results were obtained for conditions during freewheeling at various Reynolds numbers. In this study, the freewheeling tip speed ratio, which relates the ratio of maximum blade speed to the free stream velocity at no load, was divided into three regions based on the Reynolds number. At low Reynolds numbers, the tip speed ratio was lower than unity and blades were in a stall condition. At the end of the first region, there was a sharp increase of the tip speed ratio so the second region has a tip speed ratio significantly higher than unity. In this region, the tip speed ratio increases almost linearly with Reynolds number. At high Reynolds numbers, the tip speed ratio is almost independent of Reynolds number in the third region. It should be noted that the transition between these three regions is a function of the blade profile and solidity. However, the three-region behavior is applicable to turbines with different profiles and solidities.


2018 ◽  
Vol 851 ◽  
pp. 715-738 ◽  
Author(s):  
Mehdi Jabbarzadeh ◽  
Henry Chien Fu

Microorganisms must approach other suspended organisms or particles in order to interact with them during a host of life processes including feeding and mating. Microorganisms live at low Reynolds number where viscosity dominates and strongly affects the hydrodynamics of swimmer and nearby cells and objects. Viscous hydrodynamics makes it difficult for two surfaces to approach closely at low Reynolds numbers. Nonetheless, it is observed that microorganisms in fluid are still able to approach closely enough to interact with each other or suspended particles. Here, we study how the physical constraints provided by viscous hydrodynamics affects the feasibility of direct approach of flagellated and ciliated microorganisms to targets of different sizes. We find that it is feasible for singly flagellated swimmers to approach targets that are the same size or bigger. On the other hand, for squirmers, the feasibility of approach depends on near-field flows that can be controlled by the details of their swimming strokes.


Sign in / Sign up

Export Citation Format

Share Document