Simultaneous Selective Disassembly and End-of-Life Decision Making for Multiple Products That Share Disassembly Operations

2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Sara Behdad ◽  
Minjung Kwak ◽  
Harrison Kim ◽  
Deborah Thurston

Environmental protection legislation, consumer interest in “green” products, a trend toward corporate responsibility and recognition of the potential profitability of salvaging operations, has resulted in increased interest in product take back. However, the cost effectiveness of product take-back operations is hampered by many factors, including the high cost of disassembly and a widely varying feedstock of dissimilar products. Two types of decisions must be made, how to carry out the disassembly process in the most efficient manner to “mine” the value-added that is still embedded in the product, and then how to best utilize that value-added once it is recovered. This paper presents a method for making those decisions. The concept of a transition matrix is integrated with mixed integer linear programming to determine the extent to which products should be disassembled and simultaneously determine the optimal end-of-life (EOL) strategy for each resultant component or subassembly. The main contribution of this paper is the simultaneous consideration of selective disassembly, multiple products, and the value added that remains in each component or subassembly. Shared disassembly operations and capacity limits are considered. An example using two cell phone products illustrates application of the model. The obtained results demonstrate the most economical level of disassembly for each cell phone and the best EOL options for each resultant module. In addition, the cell phone example shows that sharing disassembly operations between different products makes disassembly more cost effective compared with the case in which each product is disassembled separately.

Author(s):  
Sara Behdad ◽  
Minjung Kwak ◽  
Harrison Kim ◽  
Deborah Thurston

Environmental protection legislation, consumer interest in “green” products, a trend towards corporate responsibility and recognition of the potential profitability of salvaging operations have resulted in increased interest in product take-back. However, the cost-effectiveness of product take-back operations is hampered by many factors, including the high cost of disassembly and a widely varying feedstock of dissimilar products. Two types of decisions must be made; how to carry out the disassembly process in the most efficient manner to “mine” the value-added that is still embedded in the product, and then how to best utilize that value-added once it is recovered. This paper presents a method for making those decisions. The concept of a transition matrix is integrated with mixed integer linear programming to determine the extent to which products should be disassembled, and simultaneously determine the optimal end of life (EOL) strategy for each resultant component or subassembly. The main contribution of this paper is the simultaneous consideration of selective disassembly, multiple products, and the value added that remains in each component or subassembly. Shared disassembly operations and capacity limits are considered. An example using two cell phone products illustrates application of the model.


Logistics ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 18
Author(s):  
Irineu de Brito ◽  
Silvia Uneddu ◽  
Emma Maspero ◽  
Paulo Gonçalves

This research supports the United Nations Children’s Fund’s (UNICEF) conceptualization, planning and implementation of a campaign for distribution of more than 12 million mosquito nets in Ivory Coast. Procured from four different suppliers in Asia, the nets were transported to the two ports in Ivory Coast before being pre-positioned at 71 Health Districts across the country, a mixed integer network flow model identifies optimal transport options. The process of modeling and the model developed in this paper brought a significant understanding of the problem and, consequently, a reduction in the overall procurement and logistics costs. The implications of using mathematical modeling by practitioners as a tool which contributes to solve humanitarian logistics problems are significant. Mathematical models, like linear programming, can greatly support overall decision-making within humanitarian organizations by helping to ensure that limited resources are used in the most cost-effective and efficient manner. However, it is important to ensure consultations with and involvement by on the ground practitioners to ensure developed solutions assessed to fit the operating context before being implemented.


2018 ◽  
Vol 136 ◽  
pp. 9-21 ◽  
Author(s):  
Sagar T. Cholake ◽  
Farshid Pahlevani ◽  
Vaibhav Gaikwad ◽  
Helen Millicer ◽  
Veena Sahajwalla

2018 ◽  
Vol 27 (4) ◽  
pp. 096369351802700 ◽  
Author(s):  
Mehmet Önal ◽  
Gökdeniz Neşer

Glass reinforced polyester (GRP), as a thermoset polymer composites, dominates boat building industry with its several advantages such as high strength/weight ratio, cohesiveness, good resistance to environment. However, proper recovering and recycling of GRP boats is became a current environmental requirement that should be met by the related industry. In this study, to propose in a cost effective and environmentally friendly way, Life Cycle Assessment (LCA) has been carried out for six scenarios include two moulding methods (namely Hand Lay-up Method, HLM and Vacuum Infusion Method, VIM) and three End-of-Life (EoL) alternatives(namely Extruding, Incineration and Landfill) for a recreational boat's GRP hulls. A case study from raw materials purchasing phase to disposal/recycling stages has been established taking 11 m length GRP boat hull as the functional unit. Analysis show that in the production phase, the impacts are mainly due to the use of energy (electricity), transport and raw material manufacture. Largest differences between the methods considered (HLM and VIM) can be observed in the factors of marine aquatic ecotoxicity and eutrophication while the closest ones are abiotic depletion, ozon layer depletion and photochemical oxidation. The environmental impact of VIM is much higher than HLM due to its higher energy consumption while vacuum infusion method has lower risk than hand lay-up method in terms of occupational health by using less raw material (resin) in a closed mold. In the comparison of the three EoL techniques, the mechanical way of recycling (granule extruding) shows better environmental impacts except terrestrial ecotoxicity, photochemical oxidation and acidification. Among the EoL alternatives, landfill has the highest environmental impacts except ‘global warming potential’ and ‘human toxicity’ which are the highest in extrusion. The main cause of the impacts of landfill is the transportation needs between the EoL boats and the licenced landfill site. Although it has the higher impact on human toxicity, incineration is the second cleaner alternative of EoL techniques considered in this study. In fact that the similar trend has been observed both in production and EoL phases of the boat. It is obvious that using much more renewable energy mix and greener transportation alternative can reduce the overall impact of the all phases considerably.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 899
Author(s):  
Djordje Mitrovic ◽  
Miguel Crespo Chacón ◽  
Aida Mérida García ◽  
Jorge García Morillo ◽  
Juan Antonio Rodríguez Diaz ◽  
...  

Studies have shown micro-hydropower (MHP) opportunities for energy recovery and CO2 reductions in the water sector. This paper conducts a large-scale assessment of this potential using a dataset amassed across six EU countries (Ireland, Northern Ireland, Scotland, Wales, Spain, and Portugal) for the drinking water, irrigation, and wastewater sectors. Extrapolating the collected data, the total annual MHP potential was estimated between 482.3 and 821.6 GWh, depending on the assumptions, divided among Ireland (15.5–32.2 GWh), Scotland (17.8–139.7 GWh), Northern Ireland (5.9–8.2 GWh), Wales (10.2–8.1 GWh), Spain (375.3–539.9 GWh), and Portugal (57.6–93.5 GWh) and distributed across the drinking water (43–67%), irrigation (51–30%), and wastewater (6–3%) sectors. The findings demonstrated reductions in energy consumption in water networks between 1.7 and 13.0%. Forty-five percent of the energy estimated from the analysed sites was associated with just 3% of their number, having a power output capacity >15 kW. This demonstrated that a significant proportion of energy could be exploited at a small number of sites, with a valuable contribution to net energy efficiency gains and CO2 emission reductions. This also demonstrates cost-effective, value-added, multi-country benefits to policy makers, establishing the case to incentivise MHP in water networks to help achieve the desired CO2 emissions reductions targets.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Gonzalo M. Figueroa-Torres ◽  
Jon K. Pittman ◽  
Constantinos Theodoropoulos

Abstract Background The production of microalgal biofuels, despite their sustainable and renowned potential, is not yet cost-effective compared to current conventional fuel technologies. However, the biorefinery concept increases the prospects of microalgal biomass as an economically viable feedstock suitable for the co-production of multiple biofuels along with value-added chemicals. To integrate biofuels production within the framework of a microalgae biorefinery, it is not only necessary to exploit multi-product platforms, but also to identify optimal microalgal cultivation strategies maximising the microalgal metabolites from which biofuels are obtained: starch and lipids. Whilst nutrient limitation is widely known for increasing starch and lipid formation, this cultivation strategy can greatly reduce microalgal growth. This work presents an optimisation framework combining predictive modelling and experimental methodologies to effectively simulate and predict microalgal growth dynamics and identify optimal cultivation strategies. Results Microalgal cultivation strategies for maximised starch and lipid formation were successfully established by developing a multi-parametric kinetic model suitable for the prediction of mixotrophic microalgal growth dynamics co-limited by nitrogen and phosphorus. The model’s high predictive capacity was experimentally validated against various datasets obtained from laboratory-scale cultures of Chlamydomonas reinhardtii CCAP 11/32C subject to different initial nutrient regimes. The identified model-based optimal cultivation strategies were further validated experimentally and yielded significant increases in starch (+ 270%) and lipid (+ 74%) production against a non-optimised strategy. Conclusions The optimised microalgal cultivation scenarios for maximised starch and lipids, as identified by the kinetic model presented here, highlight the benefits of exploiting modelling frameworks as optimisation tools that facilitate the development and commercialisation of microalgae-to-fuel technologies.


Author(s):  
Heinz-Bernhard Kraatz ◽  
Maryam Abdinejad ◽  
Iranaldo Santos da Silva

Reducing carbon dioxide (CO2) to value-added synthons in a selective and efficient manner remains a sizable challenge to CO2 conversion research. Although many electrocatalysts have been reported to date, those...


2017 ◽  
Vol 70 (9) ◽  
pp. 740-744 ◽  
Author(s):  
Dawn Williams-Voorbeijtel ◽  
Francisco Sanchez ◽  
Christine G Roth

AimsElimination of non-value added testing without compromising high-quality clinical care is an important mandate for laboratories in a value-based reimbursement system. The goal of this study was to determine the optimal combination of flow cytometric markers for a screening approach that balances efficiency and accuracy.MethodsAn audit over 9 months of flow cytometric testing was performed, including rereview of all dot plots from positive cases.ResultsOf the 807 cases in which leukaemia/lymphoma testing was performed, 23 were non-diagnostic and 189 represented bronchoalveolar lavage specimens. Of the remaining 595 cases, 137 (23%) were positive for an abnormal haematolymphoid population. Review of the positive cases identified minimum requirements for a screening tube as well as analysis strategies to overcome the diagnostic pitfalls noted. It is estimated that 38% fewer antibodies would be used in a screening approach, representing an opportunity for significant cost savings.ConclusionsWe provide a framework for developing an evidence-based screening combination for cost-effective characterisation of haematolymphoid malignancies, promoting adoption of ‘just-in-time’ testing systems that tailor the evaluation to the diagnostic need.


2020 ◽  
Vol 27 (1) ◽  
pp. 27-32
Author(s):  
Ashok Kumar Pandey ◽  

Bamboo shoots being low in fat, high in dietary fiber and rich in mineral contents have been consumed traditionally by the people world over. Besides nutrients it also contains some anti-nutrients e.g. cyanogens. Due to seasonal availability of bamboo shoots, processing for reducing anti-nutrients in raw shoots while keeping nutrients intact and enhancement of shelf life of the value added products assume great significance for its utilization. This paper focuses on post harvest processing and value addition of bamboo shoots for its utilization as food products. Juvenile bamboo shoots of Bambusa bambos, B. tulda, Dendrocalamus asper and D. strictus were collected and processed, by boiling in brine solution, to remove the anti-nutrients (cyanogen). A simple, efficient and cost effective processing method for bamboo shoots was developed. This method significantly reduces the amount of cyanogens and retains considerable amount of nutrients and thus may be utilized for processing of bamboo shoots. Different value added edible products viz. chunks or bari (by adding pulses), pickle, sauce and papad (by adding potato) were prepared. All products were good in taste and texture. Nutritional analysis was done to determine the shelf life of the products. The nutrient content of processed products (chunks, sauce, pickle and papad) showed a gradual decrease and need to be consumed within 6 months from the date of making. However, in case of papad the carbohydrate content did not decrease much but the taste was not acceptable after 8 months. Whereas, in case of pickles, even nutrient content decreased but the product was acceptable even after two years after preparation as it was good in taste and texture. Thus, processing and value addition practices can be considered as key to the future of sustainable management of bamboo resources because they not only provide quality edible products but also enable harvesters/collectors to get better income opportunities.


Sign in / Sign up

Export Citation Format

Share Document