Study of Wear Self-Repair of Steel 100Cr6 Rubbed With Lubricants Modified With Schiff Base Copper Complex

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Xinlei Gao ◽  
Li Wu ◽  
Jian Li ◽  
Wanzhen Gao

Preparation of a Cu (II) chelate of bis(salicylaldehyde)ethylenediamine was carried out directly in epoxidized rape oil via a water/oil microemulsion reactor. Detailed characterization of the friction of boundary lubrication produced by epoxidized rape oil with and without the Cu (II) chelate of bis(salicylaldehyde)ethylenediamine was performed in reciprocating sliding tests with a microtribometer. In the presence of a modification of the epoxidized rape oil with 2 wt % of the Cu (II) chelate of bis(salicylaldehyde)ethylenediamine, the friction coefficient decreased by 15%. The Cu (II) chelate of bis(salicylaldehyde)ethylenediamine served as the additive in the epoxidized rape oil and self-assembled on the surface of 100Cr6 steel. The self-assembled monolayer was detected with atomic force microscopy and scanning electron microscopy, and characterized with cyclic voltammetry. It was verified by energy dispersive spectroscopy and X-ray photoelectron spectroscopy analyses that steel/steel rubbing pairs underwent a selective transfer of organic substance and copper, as a result of lubrication with the modified lubricant. It indicated that the modification of epoxidized rape oil with Cu (II) chelate of bis(salicylaldehyde)ethylenediamine led to wear self-repair on the steel surface, with selective transfer of a film of organic substance and copper metal.

2008 ◽  
Vol 373-374 ◽  
pp. 645-648 ◽  
Author(s):  
Bao Feng Cui ◽  
Jian Min Chen ◽  
Jun Yan Zhang ◽  
Hui Di Zhou

The fourth generation of poly amide amine molecular self-assembled monolayer (PAMAM (G4.0)-SAM) was prepared on hydroxylated Si (111) substrate by a self-assembled technique from specially formulated solution. The PAMAM (G4.0)-SAM were characterized by means of contact angle measurement, ellipsometry, X-ray photoelectron spectroscope (XPS), and atomic force microscopy (AFM). The tribological properties of the as-prepared thin films sliding against a steel ball were evaluated on a friction and wear tester. The tribological results show that the friction coefficient of monocrystal line silicon substrate reduces from 0.6 to 0.18 due to the formation of PAMAM-SAMs on its surface. And the PAMAM (G4.0) -SAM has longer wear life (18000 sliding pass). It is demonstrated that PAMAM (G4.0) -SAM exhibited good wear resistant property. In conclusion, the PAMAM (G4.0)-SAM which possesses good wear resistant property was successfully prepared and the film.


2011 ◽  
Vol 480-481 ◽  
pp. 1065-1069
Author(s):  
Bin Liu ◽  
Lin Wang ◽  
Yin Zhong Bu ◽  
Sheng Rong Yang ◽  
Jin Qing Wang

Titanium (Ti) and its alloys have been applied in orthopedics as one of the most popular biomedical metallic implant materials. In this work, to enhance the bioactivity, the surface of Ti alloy pre-modified by silane coupling agent and glutaraldehyde was covalently grafted with chitosan (CS) via biochemical multistep self-assembled method. Then, for the first time, the achieved surface was further immobilized with casein phosphopeptides (CPP), which are one group of bioactive peptides released from caseins in the digestive tract and can facilitate the calcium adsorption and usage, to form CS-CPP biocomposite coatings. The structure and composition of the fabricated coatings were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscopy (AFM). As the experimental results indicated, multi-step assembly was successfully performed, and the CS and CPP were assembled onto the Ti alloy surface orderly. It is anticipated that the Ti alloys modified by CS-CPP biocomposite coatings will find potential applications as implant materials in biomedical fields.


1999 ◽  
Vol 5 (6) ◽  
pp. 413-419 ◽  
Author(s):  
Bernardo R.A. Neves ◽  
Michael E. Salmon ◽  
Phillip E. Russell ◽  
E. Barry Troughton

Abstract: In this work, we show how field emission–scanning electron microscopy (FE-SEM) can be a useful tool for the study of self-assembled monolayer systems. We have carried out a comparative study using FE-SEM and atomic force microscopy (AFM) to assess the morphology and coverage of self-assembled monolayers (SAM) on different substrates. The results show that FE-SEM images present the same qualitative information obtained by AFM images when the SAM is deposited on a smooth substrate (e.g., mica). Further experiments with rough substrates (e.g., Al grains on glass) show that FE-SEM is capable of unambiguously identifying SAMs on any type of substrate, whereas AFM has significant difficulties in identifying SAMs on rough surfaces.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2075
Author(s):  
Diego Gomez-Maldonado ◽  
Iris Beatriz Vega Erramuspe ◽  
Ilari Filpponen ◽  
Leena-Sisko Johansson ◽  
Salvatore Lombardo ◽  
...  

With increasing global water temperatures and nutrient runoff in recent decades, the blooming season of algae lasts longer, resulting in toxin concentrations that exceed safe limits for human consumption and for recreational use. From the different toxins, microcystin-LR has been reported as the main cyanotoxin related to liver cancer, and consequently its abundance in water is constantly monitored. In this work, we report a methodology for decorating cellulose nanofibrils with β-cyclodextrin or with poly(β-cyclodextrin) which were tested for the recovery of microcystin from synthetic water. The adsorption was followed by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), allowing for real-time monitoring of the adsorption behavior. A maximum recovery of 196 mg/g was obtained with the modified by cyclodextrin. Characterization of the modified substrate was confirmed with Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA), and Atomic Force Microscopy (AFM).


2015 ◽  
Vol 752-753 ◽  
pp. 1379-1383
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
Zaidi Embong

The purpose of this paper is to study a ink surface morphology, quantify the chemical composition involved in processing of graphite ink printed by flexographic printing. The methodology is to use surface sensitive technique, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). As a finding we successfully achieved 25 micron lines array using PDMS printing plate. The Originality and value of this work is surface sensitive techniques like XPS, AFM and FESEM were exclusively used in order to characterize graphite inks printed by flexographic method, using PDMS printing plate.


2017 ◽  
Vol 121 (10) ◽  
pp. 5635-5641 ◽  
Author(s):  
Meagan B. Elinski ◽  
Benjamin D. Menard ◽  
Zhuotong Liu ◽  
James D. Batteas

RSC Advances ◽  
2018 ◽  
Vol 8 (43) ◽  
pp. 24660-24664
Author(s):  
Yuki Araki ◽  
Taito Sekine ◽  
Ryongsok Chang ◽  
Tomohiro Hayashi ◽  
Hiroshi Onishi

Water molecules above a bioinert mixed-charged self-assembled monolayer (MC-SAM) surface are highly structured compared to those of bioactive SAM surfaces.


Sign in / Sign up

Export Citation Format

Share Document