Performance Analysis of Full-Film Textured Surfaces With Consideration of Roughness Effects

2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Y. Qiu ◽  
M. M. Khonsari

A mass-conservative algorithm that implements the Jakobsson–Floberg–Olsson cavitation theory is used to predict the performances of seal-like structures and thrust bearings with a dimpled surface texture. The results of a series of simulations for load-carrying capacity, film thickness, dimple depth, dimple density, cavitation pressure, leakage, and friction force are presented, and the relationship between these performance parameters is studied. It is shown that, under the conditions simulated, surface roughness can improve the load-carrying capacity, but its effect is limited.

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
C. I. Papadopoulos ◽  
L. Kaiktsis ◽  
M. Fillon

The paper presents a detailed computational study of flow patterns and performance indices in a dimpled parallel thrust bearing. The bearing consists of eight pads; the stator surface of each pad is partially textured with rectangular dimples, aiming at maximizing the load carrying capacity. The bearing tribological performance is characterized by means of computational fluid dynamics (CFD) simulations, based on the numerical solution of the Navier–Stokes and energy equations for incompressible flow. Realistic boundary conditions are implemented. The effects of operating conditions and texture design are studied for the case of isothermal flow. First, for a reference texture pattern, the effects of varying operating conditions, in particular minimum film thickness (thrust load), rotational speed and feeding oil pressure are investigated. Next, the effects of varying texture geometry characteristics, in particular texture zone circumferential/radial extent, dimple depth, and texture density on the bearing performance indices (load carrying capacity, friction torque, and friction coefficient) are studied, for a representative operating point. For the reference texture design, the effects of varying operating conditions are further investigated, by also taking into account thermal effects. In particular, adiabatic conditions and conjugate heat transfer at the bearing pad are considered. The results of the present study indicate that parallel thrust bearings textured by proper rectangular dimples are characterized by substantial load carrying capacity levels. Thermal effects may significantly reduce load capacity, especially in the range of high speeds and high loads. Based on the present results, favorable texture designs can be assessed.


1959 ◽  
Vol 26 (3) ◽  
pp. 337-340
Author(s):  
C. F. Kettleborough

Abstract The problem of the stepped-thrust bearing is considered but, whereas normally volumetric continuity is assumed, the equations are solved assuming mass continuity; i.e., the variation of density is also considered as well as the effect of the stepped discontinuity on the load-carrying capacity and the coefficient of friction. Computed theoretical curves illustrate the importance of the density on the operation of this bearing and, in part, explain results already published.


1986 ◽  
Vol 108 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Y. Mitsuya

Stokes roughness effects on hydrodynamic lubrication are studied in the slip flow regime. Slip flow boundary conditions for Navier-Stokes equations are derived, assuming that the fluid on a surface slips due to the molecular mean free path along the surface, even if the surface is rough. The perturbation method for Navier-Stokes equations, which was derived in Part I of this report, is then applied. Slip flow effects on load carrying capacity and frictional force are numerically clarified for both Stokes and Reynolds roughnesses. In the slip flow regime, second-order quantities induced by Stokes effects, such as flow rate, load carrying capacity, and frictional force are in proportion to the wavenumber squared. This phenomenon relative to the quantities being proportional is also the same as that in the continuum flow regime. As a result of velocity slippage, the load carrying capacity in Stokes roughness is found to decrease more than in Reynolds roughness for incompressible films, while the relationship is reversed for compressible films having a high compressibility number. The simulation of random roughness, which is generated by numerical means, clarifies one important result: the average slip flow effects associated with random Stokes roughness become similar to the slip flow effects in deterministic sinusoidal Stokes roughness, whose wavelength and height are statistically equivalent to those of random roughness. Although attention should be given to the fact that Stokes effects on random roughness demonstrate considerable scattering with the continuum flow, such scattering diminishes with the slip flow.


Author(s):  
P Samanta ◽  
MM Khonsari

A simple procedure is proposed for predicting the limiting pressure and corresponding limiting of the load-carrying capacity of a foil thrust bearing. A closed-form analytical solution for the limiting load is derived, and the predictions are verified by the numerical solution. An approximate solution for limiting thrust load is also obtained and compared to the value obtained through the analytical solution. A parametric analysis is performed to examine the dependency of the limiting load on different geometric parameters for the bearing.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
C. I. Papadopoulos ◽  
E. E. Efstathiou ◽  
P. G. Nikolakopoulos ◽  
L. Kaiktsis

This paper presents an optimization study of the geometry of three-dimensional micro-thrust bearings in a wide range of convergence ratios. The optimization goal is the maximization of the bearing load carrying capacity. The bearings are modeled as micro-channels, consisting of a smooth moving wall (rotor), and a stationary wall (stator) with partial periodic rectangular texturing. The flow field is calculated from the numerical solution of the Navier-Stokes equations for incompressible isothermal flow; processing of the results yields the bearing load capacity and friction coefficient. The geometry of the textured channel is defined parametrically for several width-to-length ratios. Optimal texturing geometries are obtained by utilizing an optimization tool based on genetic algorithms, which is coupled to the CFD code. Here, the design variables define the bearing geometry and convergence ratio. To minimize the computational cost, a multi-objective approach is proposed, consisting in the simultaneous maximization of the load carrying capacity and minimization of the bearing convergence ratio. The optimal solutions, identified based on the concept of Pareto dominance, are equivalent to those of single-objective optimization problems for different convergence ratio values. The present results demonstrate that the characteristics of the optimal texturing patterns depend strongly on both the convergence ratio and the width-to-length ratio. Further, the optimal load carrying capacity increases at increasing convergence ratio, up to an optimal value, identified by the optimization procedure. Finally, proper surface texturing provides substantial load carrying capacity even for parallel or slightly diverging bearings. Based on the present results, we propose simple formulas for the design of textured micro-thrust bearings.


2021 ◽  
pp. 391-420

Abstract This chapter covers the tribological properties of different types of oil, greases, solid lubricants, and metalworking and traction fluids. It explains how lubricants are made, how they work, and how they are applied and tested. It also discusses the fundamentals of lubrication and friction control, the relationship between viscosity and breakaway friction, and the factors that affect load-carrying capacity and service life.


2013 ◽  
Vol 351-352 ◽  
pp. 939-944
Author(s):  
Ming Li ◽  
De Jian Shen ◽  
Jie Yang ◽  
Zheng Hua Cui

This paper aims at detailed investigation on the relationship between half-cell potentials and load carrying capacity of corroded RC beam-column joints. There are four specimens in the test with the corrosion rate to 0%, 3%, 9% and 15%. Results show that the potentials of normal joint are larger than that of corroded damaged joints. As the corrosion rate of joints increases, load carrying capacity and half-cell potentials decrease. Analytical method based on the values of half-cell potentials to evaluate the load carrying capacity of corroded joint is presented. Comparing the analytical and experimental results, the proposed method can predict the load carrying capacity of corroded reinforced concrete beam-column joints.


Sign in / Sign up

Export Citation Format

Share Document