Numerical Study of the Load-Carrying Capacity of Lubricated Parallel Sliding Textured Surfaces including Wall Slip

2013 ◽  
Vol 57 (1) ◽  
pp. 134-145 ◽  
Author(s):  
Mohammad Tauviqirrahman ◽  
Muchammad ◽  
Jamari ◽  
Dik J. Schipper
Author(s):  
Sanjay Sharma ◽  
Aniket Sharma ◽  
Gourav Jamwal ◽  
Rajeev Kumar Awasthi

The present comparative numerical study is between V-shape protruded, dimple textured, and untextured bearing. The performance parameters in terms of the load-carrying capacity and coefficient of friction are computed by solving governing Reynold’s equation of the lubricant fluid flow. The governing equation is solved by the finite element method by assuming that the fluid is Newtonian and isoviscous in nature. The effect of eccentricity ratios, texture distribution, texture heights, and texture depths are considered for the analysis in both textured bearings. From simulated results, the load-carrying capacity and coefficient of friction is found to be maximum for protruded textured bearing in full textured region and first half-textured region respectively as compared to untextured bearings. Finally, optimal operating and geometrical parameters of textured bearing is obtained by computing performance enhancement ratio, which is the ratio of the load-carrying capacity to the coefficient of friction. The maximum value of the performance enhancement ratio is found for protruded and dimple textured bearing in full texturing and second half-region corresponding to the eccentricity ratio of 0.8 and 0.6 respectively at texture height and depth of 0.4.


Author(s):  
Xiandong Liao ◽  
Xiang Hu

The seismic performance of the internal connection of precast prestressed concrete frame was studied systematically, based on the experiment of full-scale model under low cyclic reversed loading. This study was mainly focused on failure pattern, load-carrying capacity, skeleton curves, and hysteresis curves. Furthermore, a nonlinear finite element analysis using Abaqus was carried out to study the characteristics of the internal connection of precast prestressed concrete frame. Results revealed that the damage was concentrated mainly on beam end owing to flexural action, while steel bars in the columns and stirrups in the core region remained elastic until failure occurred. The calculated value of the load-carrying capacity of the internal connection was similar to the experimental one. Present study can be referenced for the application of precast prestressed concrete frame in high seismic zones.


Author(s):  
Fredrik Sahlin ◽  
Sergei B. Glavatskih ◽  
Torbjo¨rn Almqvist ◽  
Roland Larsson

Results of a numerical study of the influence of micro-patterned surfaces in hydrodynamic lubrication of two parallel walls are reported. Two types of parameterized grooves with the same order of depth as the film thickness are used on one stationary wall. The other wall is smooth and is sliding with a specified tangential velocity. Isothermal incompressible two dimensional full film fluid flow mechanics is solved using a Computational Fluid Dynamics method. It is shown that, by introducing a micro-pattern on one of two parallel walls, a net pressure rise in the fluid domain is achieved. This produces a load carrying capacity on the walls which is mainly contributed by fluid inertia. The load carrying capacity increases with Reynolds number. The load carrying capacity is reported to increase with groove width and depth. However, at a certain depth a vortex appears in the groove and near this value the maximum load carrying capacity is achieved. It is shown that the friction force decreases with deeper and wider grooves. Among all geometries studied, optimum geometry shapes in terms of hydrodynamic performance are reported.


2012 ◽  
Vol 472-475 ◽  
pp. 391-394 ◽  
Author(s):  
Fan Ming Meng ◽  
Ling Zhang

The influence of cavitation in a lubricant between textured surfaces on tribological performances of the surfaces was investigated based on an extended Reynolds equation and other associated equations. The tribological performances of the surfaces holding dimples with divergent-convergent shape were analyzed with the cavitation effect consideration at different dimple numbers. In doing so, the elastic deformation of the surface is evaluated using continuous convolution fast Fourier transform (CC-FFT). Some mechanisms are revealed about the cavitation effect on the friction coefficient, friction force, load-carrying capacity and cavitated area of the textured surfaces.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Y. Qiu ◽  
M. M. Khonsari

A mass-conservative algorithm that implements the Jakobsson–Floberg–Olsson cavitation theory is used to predict the performances of seal-like structures and thrust bearings with a dimpled surface texture. The results of a series of simulations for load-carrying capacity, film thickness, dimple depth, dimple density, cavitation pressure, leakage, and friction force are presented, and the relationship between these performance parameters is studied. It is shown that, under the conditions simulated, surface roughness can improve the load-carrying capacity, but its effect is limited.


2005 ◽  
Vol 127 (1) ◽  
pp. 96-102 ◽  
Author(s):  
Fredrik Sahlin ◽  
Sergei B. Glavatskih ◽  
Torbjo¨rn Almqvist ◽  
Roland Larsson

Results of a numerical study of the influence of micro-patterned surfaces in hydrodynamic lubrication of two parallel walls are reported. Two types of parameterized grooves with the same order of depth as the film thickness are used on one stationary wall. The other wall is smooth and is sliding with a specified tangential velocity. Isothermal incompressible two dimensional full film fluid flow mechanics is solved using a Computational Fluid Dynamics method. It is shown that, by introducing a micro-pattern on one of two parallel walls, a net pressure rise in the fluid domain is achieved. This produces a load carrying capacity on the walls which is mainly contributed by fluid inertia. The load carrying capacity increases with Reynolds number. The load carrying capacity is reported to increase with groove width and depth. However, at a certain depth a vortex appears in the groove and near this value the maximum load carrying capacity is achieved. It is shown that the friction force decreases with deeper and wider grooves. Among all geometries studied, optimum geometry shapes in terms of hydrodynamic performance are reported.


2012 ◽  
Vol 166-169 ◽  
pp. 333-337
Author(s):  
De Fa Sun

This paper addresses the applicability of the provisions of Chinese (GB50018-2002, effective width method) and the AISI Specifications (AISI-DSM, direct strength method) to estimate the load-carrying capacity of cold-formed steel lipped channel columns. It is worth noting that GB50018-2002 and AISI-DSM adopt different approaches to perform this task: while the former is based on the “Effective Width” concept, the latter may adopt the ‘‘Direct Strength Method’’. First, the relevant aspects related to the experimental investigations are briefly presented. Then, an extensive numerical study is performed by them, the estimates provided by them are compared with the experimental values. On the basis of these comparisons, some concluding remarks are drawn concerning the application of the GB50018-2002 and AISI-DSM design approaches.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ramesh B. Kudenatti ◽  
Shalini M. Patil ◽  
P. A. Dinesh ◽  
C. V. Vinay

This paper theoretically examines the combined effects of surface roughness and magnetic field between two rectangular parallel plates of which the upper plate has roughness structure and the lower plate has porous material in the presence of transverse magnetic field. The lubricating fluid in the film region is assumed to be Newtonian fluid (linearly viscous and incompressible fluid). This model consists of mathematical formulation of the problem with appropriate boundary conditions and solution numerically by finite difference based multigrid method. The generalized average modified Reynolds equation is derived for longitudinal roughness using Christensen’s stochastic theory which assumes that the height of the roughness asperity is of the same order as the mean separation between the plates. We obtain the bearing characteristics such as pressure distribution and load carrying capacity for various values of roughness, Hartmann number, and permeability parameters. It is observed that the pressure distribution and load carrying capacity were found to be more pronounced for increasing values of roughness parameter and Hartmann number; whereas these are found to be decreasing for increasing permeability compared to their corresponding classical cases. The physical reasons for these characters are discussed in detail.


2020 ◽  
pp. 096739112098363
Author(s):  
Yueqi Hu ◽  
Jow-Lian Ding ◽  
Yao Chen

Many studies, experimental, theoretical, and numerical, have been done on polymer nanocomposites, but nearly all of them have focused on a particular type of material system or some specific material properties. A comprehensive understanding of this complicated material system is still quite lacking. The objective of this study is to use mesoscale finite element simulation to gain insights on the reinforcing efficiencies of different types of carbon nanofillers as distinguished by their geometries and interfacial strengths. It is demonstrated that CNT (carbon nanotube) and CNF (carbon nanofiber) have larger load carrying capacity and potentially higher reinforcing efficiency than GNP (graphite nanoplatelet) due to their larger aspect ratio and physical length. However, the higher load carrying capacity is also associated with higher interfacial stress which can lead to earlier debonding, particularly for CNT. GNP, on the other hand, has lower load carrying capacity, and is thus less sensitive to the bonding condition and less susceptible to debonding. The overall reinforcing efficiency is a manifestation of the interplay between the load carrying capacity of the filler, which is limited by filler’s geometry, and the load transfer capability at the interface, which is limited by the filler/matrix interfacial strength. This interplay is also reflected in the effects of filler orientation on reinforcing efficiency. The insights gained from this study can be used to devise a strategy for developing advanced nanocomposites, such as hybrid composites.


Sign in / Sign up

Export Citation Format

Share Document