Investigations on the Rotordynamic Characteristics of a Hole-Pattern Seal Using Transient CFD and Periodic Circular Orbit Model

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Xin Yan ◽  
Jun Li ◽  
Zhenping Feng

Numerical investigations on the rotordynamic characteristics of a typical hole-pattern seal using transient three-dimensional Reynolds-averaged Navier–Stokes (RANS) solution and the periodic circular orbit model were conducted in this work. The unsteady solutions combined with mesh deformation method were utilized to solve the three-dimensional RANS equations and obtain the transient reaction forces on a typical hole-pattern seal rotor at five different excitation frequencies. The relation between the periodic reaction forces and frequency dependent rotordynamic coefficients of the hole-pattern seal was obtained by considering the rotor with a periodic circular orbit (including forward orbit and backward orbit) of the seal center. The rotordynamic coefficients of the hole-pattern seal were then solved based on the obtained unsteady reaction forces and presented numerical method. Compared with the experimental data, the predicted rotordynamic coefficients of the hole-pattern seal are more agreeable with the experiment than that of the ISO-temperature (ISOT) bulk flow analysis and numerical approach with one-direction-shaking model. Furthermore, the unsteady leakage flow characteristics in the hole-pattern seal were also illustrated and discussed in detail.

Author(s):  
Jun Li ◽  
Zhigang Li ◽  
Zhenping Feng

The numerical approach using the multifrequency one-dimensional whirling orbit model and Reynolds-averaged Navier-Stokes (RANS) solution was proposed for prediction of rotordynamic coefficients of pocket damper seal (PDS). By conducting the multiple frequencies one-dimensional whirling orbit for rotor center as the excitation signal, the unsteady RANS solutions combined with mesh deformation method were utilized to calculate the transient response forces on the PDS rotor surface. Unlike the single frequency whirling orbit models which require a separate computation for each frequency, the multifrequency whirling orbit model yields results for multiple frequencies and therefore requires only one computation for different frequencies. The rotor motion signal and response force signal were transformed to the frequency domain using the fast fourier transform, then the eight rotordynamic coefficients of the PDS were determined at fourteen different vibration frequencies 20–300 Hz. The numerical results of rotordynamic coefficients of the PDS were in good agreement with experimental data. The accuracy and availability of the proposed method was demonstrated. The effects of vibration frequencies and pressure ratios on the rotordynamic coefficients of PDS were also investigated using the presented numerical method. The multifrequency one-dimensional whirling orbit model is a promising method for prediction of the rotordynamic coefficients of the PDS.


Author(s):  
Jun Li ◽  
Zhigang Li ◽  
Zhenping Feng

The numerical approach using the multi-frequency one-dimensional whirling orbit model and Reynolds-Averaged Navier-Stokes (RANS) solution was proposed for prediction of rotordynamic coefficients of pocket damper seal (PDS). By conducting the multiple frequencies one-dimensional whirling orbit for rotor center as the excitation signal, the unsteady RANS solutions combined with mesh deformation method were utilized to calculate the transient response forces on the PDS rotor surface. Unlike the single frequency whirling orbit models which require a separate computation for each frequency, the multi-frequency whirling orbit model yields results for multiple frequencies and therefore requires only one computation for different frequencies. The rotor motion signal and response force signal were transformed to the frequency domain using the Fast Fourier Transform (FFT), then the eight rotordynamic coefficients of the PDS were determined at fourteen different vibration frequencies 20–300Hz. The numerical results of rotordynamic coefficients of the PDS were in good agreement with experimental data. The accuracy and availability of the proposed method was demonstrated. The effects of vibration frequencies and pressure ratios on the rotordynamic coefficients of PDS were also investigated using the presented numerical method. The multi-frequency one-dimensional whirling orbit model is a promising method for prediction of the rotordynamic coefficients of the PDS.


Author(s):  
Jifeng Wang ◽  
Norbert Mu¨ller

This paper presents computational investigation of the flow in composite material axial water turbines using Finite Volume based commercial CFD package namely Fluent. Based on three dimensional numerical flow analysis and fluid-structure interaction, the flow characteristics of water turbines including nozzle, impeller and diffuser are predicted. Two particulare cases are studied and compared. The extract power of water turbine in different rotating speed and water inlet velocity are analyzed. The calculated results will provide a fundamental understanding of the impeller as water turbine, and this design method is used to shorten the design period and improve the water turbine’s performance.


Author(s):  
Ashish Alex Sam ◽  
Parthasarathi Ghosh

Computational fluid dynamics analysis of the complex flows in a cryogenic turboexpander is essential for any improvement in its performance. This includes a detailed analysis of the unsteady turbulent flows imparted mainly by the rotor stator interactions. The flow unsteadiness due to rotor stator interaction is caused by the relative motion between the stationary and rotating component, interaction of the turbine wheel blades with the wakes and vortices generated by the upstream blades and at trailing edges. In order to minimize the loss generation due to this unsteadiness, the vaneless space length at the nozzle-turbine wheel interface and the length of the straightening portion at the turbine wheel-diffuser interface should be optimised considering the mechanical constraints. In this paper three dimensional unsteady viscous flow analysis of a helium cryogenic turboexpander was carried out using Ansys CFX to investigate the origin and flow mechanisms that cause these unsteady phenomena. The analysis has been done for three different lengths of straightening duct at the turbine wheel diffuser interface. The performance parameters from the computational results were compared and analysed to understand the flow characteristics in each case.


Author(s):  
Tomohiko Jimbo ◽  
Debasish Biswas ◽  
Yasuyuki Yokono ◽  
Yoshiki Niizeki

In this work, unsteady viscous flow analysis around turbine blade cascade using a High-Order LES turbulent model is carried out to investigate basic physical process involved in the pressure loss mechanism. This numerical analysis is assessed to the wind tunnel cascade test. Basically, all the physical phenomena occurring in nature are the effect of some cause, and the effect can somehow be measured. However, to understand the cause, detail information regarding the visualization of the phenomena, which are difficult to measure, are necessary. Therefore, in our work, firstly the computed results are compared with the measured data, which are the final outcome of the cause (of the phenomena under investigation), to verify whether our physics-based model could qualitatively predict the measured facts or not. It was found that the present model could well predict measured data. Therefore, the rest of the computed information, which were difficult to measure, were used to visualize the overall flow behavior for acquiring some knowledge of the physical process associated with the pressure loss mechanism. Our study led to an understanding that the interaction of the vortex generated on the suction and pressure surface of the blade and the secondary vortex generated on the end-wall, downstream the trailing edge resulted in the formation of a large vortex structure in this region. This unsteady three-dimensional flow characteristic is expected to play an important role in the pressure loss mechanism.


2020 ◽  
pp. 004051752098258
Author(s):  
Malik YH Saty ◽  
Nicholus Tayari Akankwasa ◽  
Jun Wang

The compact spinning system with a lattice apron utilizes air-flow dynamics to condense fibers in a bunch and enhance the yarn properties. One of the main challenges with this method is the lack of a comprehensive understanding of the air-flow field's effect in the condensing zone. This work presents a numerical and experimental investigation of the effects of three-dimensional (3D) printed guiding devices on the air-flow characteristics and yarn properties. Firstly, the 3D numerical model of the compact spinning system was set up based on the compact spinning machine geometrical dimensions. Secondly, different 3D prototypes were developed, simulated, and analyzed using computational fluid dynamics based on ANSYS software. The prototypes (A-type, B-type, and C-type), selected according to the simulation results, were then 3D printed to enable further experimental investigation. Air-flow analysis results in the air-suction flume area exhibiting a very high negative pressure, and the centerline zone was characterized by high velocity. Experimental results revealed that the three yarns spun with guiding devices had better strength, hairiness, and evenness than those spun without a guiding device. The model developed can be further improved and utilized for commercial purposes and is anticipated to improve compact spun yarn properties significantly.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Tomohiko Jimbo ◽  
Debasish Biswas ◽  
Yoshiki Niizeki

In the present paper, unsteady viscous flow analysis around turbine blade cascade using a high-order LES turbulence model is carried out to investigate the basic physical process involved in the pressure loss mechanism. This numerical analysis is assessed to the wind tunnel cascade test. Basically, all the physical phenomena occurring in nature are the effect of some cause, and the effect can somehow be measured. However, to understand the cause, detail information regarding the visualization of the phenomena, which are difficult to measure, are necessary. Therefore, in the present paper, firstly the computed results are compared with the measured data, which are the final outcome of the cause (of the phenomena under investigation), to verify whether our physics-based model could qualitatively predict the measured facts or not. It was found that the present model could well predict measured data. Therefore, the rest of the computed information, which were difficult to measure, were used to visualize the overall flow behavior for acquiring some knowledge of the physical process associated with the pressure loss mechanism. The present study led to an understanding that the interaction of the vortex generated on the suction and pressure surface of the blade and the secondary vortex generated on the end wall, downstream of the trailing edge, resulted in the formation of a large vortex structure in this region. This unsteady three-dimensional flow characteristic is expected to play an important role in the pressure loss mechanism.


1993 ◽  
Vol 115 (1) ◽  
pp. 103-108 ◽  
Author(s):  
W. Shyy ◽  
T. C. Vu

The spiral casing of a hydraulic turbine is a complex flow device which contains a passage of 360-degree turning and multiple elements of airfoils (the so-called distributor). A three-dimensional flow analysis has been made to predict the flow behavior inside the casing and distributor. The physical model employs a two-level approach, comprising of (1) a global model that adequately accounts for the geometry of the spiral casing but smears out the details of the distributor, and represents the multiple airfoils by a porous medium treatment, and (2) a local model that performs detailed analysis of flow in the distributor region. The global analysis supplies the inlet flow condition for the individual cascade of distributor airfoils, while the distributor analysis yields the information needed for modeling the characteristics of the porous medium. Comparisons of pressure and velocity profiles between measurement and prediction have been made to assess the validity of the present approach. Flow characteristics in the spiral casing are also discussed.


2011 ◽  
Vol 236-238 ◽  
pp. 1653-1657 ◽  
Author(s):  
Xiao Dong Wang ◽  
Jing Liang Dong ◽  
Tian Wang

A numerical approach was used to investigate the flow characteristics around a butterfly valve with the diameter of 2108 mm by the commercial computational fluid dynamics (CFD) code FLUENT6.3. The simulation was carried out to predict flow field structure, flow resistance coefficient, hydrodynamics torque and so on, when the large diameter butterfly valve operated at various opening degrees. The three-dimensional simulation results shown that there are vortexes presented near valve back region as the opening degree smaller than 40 degree; the flow resistance coefficient reduces rapidly with the increasing of opening degree and the resistance coefficient is quite small as the angle larger than 50 degree; the hydrodynamic torque reduces with the increasing of opening degree and the hydrodynamic torque is smaller than 20% of maximum torque; the torque ratio and the pressure drop ratio are reduce with the increasing of opening degree, the pressure drop ratio reduces rapidly as the opening degree is smaller than 50 degree.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Zhigang Li ◽  
Jun Li ◽  
Xin Yan

A numerical method using the multiple frequencies elliptical whirling orbit model and transient Reynolds-averaged Navier–Stokes (RANS) solution was proposed for prediction of the frequency dependent rotordynamic coefficients of annular gas seals. The excitation signal was the multiple frequencies waveform that acts as the whirling motion of the rotor center. The transient RANS solution combined with mesh deformation method was utilized to solve the leakage flow field in the annular gas seal and obtain the transient response forces on the rotor surface. Frequency dependent rotordynamic coefficients were determined by transforming the dynamic monitoring data of response forces and rotor motions to the frequency domain using the fast fourier transform. The frequency dependent rotordynamic coefficients of three types of annular gas seals, including a labyrinth seal, a fully partitioned pocket damper seal and a hole-pattern seal, were computed using the presented numerical method at thirteen or fourteen frequencies of 20–300 Hz. The obtained rotordynamic coefficients of three types of annular gas seals were all well agreement with the experimental data. The accuracy and availability of the proposed numerical method was demonstrated. The static pressure distributions and leakage flow rate of three types of annular gas seals were also illustrated.


Sign in / Sign up

Export Citation Format

Share Document