A High-Order LES Turbulent Model to Study Unsteady Flow Characteristics in a High Pressure Turbine Cascade

Author(s):  
Tomohiko Jimbo ◽  
Debasish Biswas ◽  
Yasuyuki Yokono ◽  
Yoshiki Niizeki

In this work, unsteady viscous flow analysis around turbine blade cascade using a High-Order LES turbulent model is carried out to investigate basic physical process involved in the pressure loss mechanism. This numerical analysis is assessed to the wind tunnel cascade test. Basically, all the physical phenomena occurring in nature are the effect of some cause, and the effect can somehow be measured. However, to understand the cause, detail information regarding the visualization of the phenomena, which are difficult to measure, are necessary. Therefore, in our work, firstly the computed results are compared with the measured data, which are the final outcome of the cause (of the phenomena under investigation), to verify whether our physics-based model could qualitatively predict the measured facts or not. It was found that the present model could well predict measured data. Therefore, the rest of the computed information, which were difficult to measure, were used to visualize the overall flow behavior for acquiring some knowledge of the physical process associated with the pressure loss mechanism. Our study led to an understanding that the interaction of the vortex generated on the suction and pressure surface of the blade and the secondary vortex generated on the end-wall, downstream the trailing edge resulted in the formation of a large vortex structure in this region. This unsteady three-dimensional flow characteristic is expected to play an important role in the pressure loss mechanism.

2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Tomohiko Jimbo ◽  
Debasish Biswas ◽  
Yoshiki Niizeki

In the present paper, unsteady viscous flow analysis around turbine blade cascade using a high-order LES turbulence model is carried out to investigate the basic physical process involved in the pressure loss mechanism. This numerical analysis is assessed to the wind tunnel cascade test. Basically, all the physical phenomena occurring in nature are the effect of some cause, and the effect can somehow be measured. However, to understand the cause, detail information regarding the visualization of the phenomena, which are difficult to measure, are necessary. Therefore, in the present paper, firstly the computed results are compared with the measured data, which are the final outcome of the cause (of the phenomena under investigation), to verify whether our physics-based model could qualitatively predict the measured facts or not. It was found that the present model could well predict measured data. Therefore, the rest of the computed information, which were difficult to measure, were used to visualize the overall flow behavior for acquiring some knowledge of the physical process associated with the pressure loss mechanism. The present study led to an understanding that the interaction of the vortex generated on the suction and pressure surface of the blade and the secondary vortex generated on the end wall, downstream of the trailing edge, resulted in the formation of a large vortex structure in this region. This unsteady three-dimensional flow characteristic is expected to play an important role in the pressure loss mechanism.


1993 ◽  
Vol 115 (1) ◽  
pp. 103-108 ◽  
Author(s):  
W. Shyy ◽  
T. C. Vu

The spiral casing of a hydraulic turbine is a complex flow device which contains a passage of 360-degree turning and multiple elements of airfoils (the so-called distributor). A three-dimensional flow analysis has been made to predict the flow behavior inside the casing and distributor. The physical model employs a two-level approach, comprising of (1) a global model that adequately accounts for the geometry of the spiral casing but smears out the details of the distributor, and represents the multiple airfoils by a porous medium treatment, and (2) a local model that performs detailed analysis of flow in the distributor region. The global analysis supplies the inlet flow condition for the individual cascade of distributor airfoils, while the distributor analysis yields the information needed for modeling the characteristics of the porous medium. Comparisons of pressure and velocity profiles between measurement and prediction have been made to assess the validity of the present approach. Flow characteristics in the spiral casing are also discussed.


1996 ◽  
Vol 118 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Toshiaki Suzuki ◽  
Tomotatsu Nagafuji ◽  
Hiroshi Komiya ◽  
Takako Shimada ◽  
Toshio Kobayashi ◽  
...  

The three-dimensional computation of steady and incompressible internal flows is of interest in numerical simulations of turbomachinery, and such simulations are currently under investigation, from inviscid to viscous flow analyses. First, surface pressure distributions have been measured for the stayvanes and the guidevanes of a Francis turbine. They are presented to verify the numerical results. Second, both inviscid and viscous three-dimensional flow analyses have been made, so as to predict the flow behavior in the same domain. Comparison of the measured pressure distributions to the predicted pressure distributions has been made to study the usefulness of the present simulations. It can be pointed out that a global analysis which includes a runner flow passage, except runner blades, is necessary to predict the three-dimensional flow characteristics and that inviscid flow analysis has the capability of good prediction for flow without separation. Viscous flow analysis gives similar results, though it is necessary to investigate further the improvement of prediction accuracy. Flow characteristics around the stayvanes and the guidevanes are also discussed.


2014 ◽  
Vol 34 (8) ◽  
pp. 755-764
Author(s):  
Mustafa Tutar ◽  
Ali Karakus

Abstract This numerical paper presents the effects of viscous dissipation on both hydrodynamic flow behavior and thermal flow characteristics of fluid included in rheological polymer flow analysis. The shear rate dependence of the viscosity is modeled using a modified form of the Cross constitutive equation, while the density changes are modeled using the modified Tait state of equation. The Navier-Stokes equations are solved in a sequential, decoupled manner with energy conservation equations using a finite volume method based fluid flow solver. Hydrodynamic and thermal boundary layer developments in an asymmetric sudden expansion for different velocity and melt flow injection temperature boundary and geometry conditions are determined under the influence of viscous dissipation effects and the results are compared with each other to measure the relative effects of viscous dissipation on the interactions of these layers for a commercial polymer melt flow, namely polypropylene (PP). The numerical results demonstrate that proposed mathematical and numerical formulations for viscosity and density variations including viscous heating terms lead to more accurate representation of the polymer melt flow and heat transfer phenomena in plane channels or mold cavity associated with a sudden expansion.


2005 ◽  
Vol 2005 (1) ◽  
pp. 77-89 ◽  
Author(s):  
W. Chon ◽  
R. S. Amano

When the airflow patterns inside a lawn mower deck are understood, the deck can be redesigned to be efficient and have an increased cutting ability. To learn more, a combination of computational and experimental studies was performed to investigate the effects of blade and housing designs on a flow pattern inside a1.1mwide corotating double-spindle lawn mower deck with side discharge. For the experimental portion of the study, air velocities inside the deck were measured using a laser Doppler velocimetry (LDV) system. A high-speed video camera was used to observe the flow pattern. Furthermore, noise levels were measured using a sound level meter. For the computational fluid dynamics (CFD) work, several arbitrary radial sections of a two-dimensional blade were selected to study flow computations. A three-dimensional, full deck model was also developed for realistic flow analysis. The computational results were then compared with the experimental results.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Xin Yan ◽  
Jun Li ◽  
Zhenping Feng

Numerical investigations on the rotordynamic characteristics of a typical hole-pattern seal using transient three-dimensional Reynolds-averaged Navier–Stokes (RANS) solution and the periodic circular orbit model were conducted in this work. The unsteady solutions combined with mesh deformation method were utilized to solve the three-dimensional RANS equations and obtain the transient reaction forces on a typical hole-pattern seal rotor at five different excitation frequencies. The relation between the periodic reaction forces and frequency dependent rotordynamic coefficients of the hole-pattern seal was obtained by considering the rotor with a periodic circular orbit (including forward orbit and backward orbit) of the seal center. The rotordynamic coefficients of the hole-pattern seal were then solved based on the obtained unsteady reaction forces and presented numerical method. Compared with the experimental data, the predicted rotordynamic coefficients of the hole-pattern seal are more agreeable with the experiment than that of the ISO-temperature (ISOT) bulk flow analysis and numerical approach with one-direction-shaking model. Furthermore, the unsteady leakage flow characteristics in the hole-pattern seal were also illustrated and discussed in detail.


Author(s):  
Jifeng Wang ◽  
Norbert Mu¨ller

This paper presents computational investigation of the flow in composite material axial water turbines using Finite Volume based commercial CFD package namely Fluent. Based on three dimensional numerical flow analysis and fluid-structure interaction, the flow characteristics of water turbines including nozzle, impeller and diffuser are predicted. Two particulare cases are studied and compared. The extract power of water turbine in different rotating speed and water inlet velocity are analyzed. The calculated results will provide a fundamental understanding of the impeller as water turbine, and this design method is used to shorten the design period and improve the water turbine’s performance.


Author(s):  
Ashish Alex Sam ◽  
Parthasarathi Ghosh

Computational fluid dynamics analysis of the complex flows in a cryogenic turboexpander is essential for any improvement in its performance. This includes a detailed analysis of the unsteady turbulent flows imparted mainly by the rotor stator interactions. The flow unsteadiness due to rotor stator interaction is caused by the relative motion between the stationary and rotating component, interaction of the turbine wheel blades with the wakes and vortices generated by the upstream blades and at trailing edges. In order to minimize the loss generation due to this unsteadiness, the vaneless space length at the nozzle-turbine wheel interface and the length of the straightening portion at the turbine wheel-diffuser interface should be optimised considering the mechanical constraints. In this paper three dimensional unsteady viscous flow analysis of a helium cryogenic turboexpander was carried out using Ansys CFX to investigate the origin and flow mechanisms that cause these unsteady phenomena. The analysis has been done for three different lengths of straightening duct at the turbine wheel diffuser interface. The performance parameters from the computational results were compared and analysed to understand the flow characteristics in each case.


2021 ◽  
Vol 15 (3) ◽  
pp. 8440-8449
Author(s):  
Sarallah Abbasi ◽  
Maryam Alizadeh

This study investigated a three-dimensional flow analysis on a two-stage contra-rotating axial compressor using the Navier–Stokes, continuity, and energy equations with Ansys CFX commercial software. In order to validate the obtained results, the absolute and relative flow angles curves for each rotor in radial direction were extracted and compared with the other investigation results, indicating good agreement. The compressor efficiency curve also was extracted by varying the compressor pressure ratio and compressor efficiency against mass flow rate. The flow results revealed that further distortion of the flow structure in the second rotor imposed a greater increase in the amount of entropy, especially at near-stall conditions. The increase of entropy in the second rotor is due to the interference of the tip leakage flow with the main flow which consequently caused more drops in the second rotor, suggesting that more efficacy of flow control methods occurred in the second rotor than in the first rotor.


Sign in / Sign up

Export Citation Format

Share Document