Numerical Study of Large Diameter Butterfly Valve on Flow Characteristics

2011 ◽  
Vol 236-238 ◽  
pp. 1653-1657 ◽  
Author(s):  
Xiao Dong Wang ◽  
Jing Liang Dong ◽  
Tian Wang

A numerical approach was used to investigate the flow characteristics around a butterfly valve with the diameter of 2108 mm by the commercial computational fluid dynamics (CFD) code FLUENT6.3. The simulation was carried out to predict flow field structure, flow resistance coefficient, hydrodynamics torque and so on, when the large diameter butterfly valve operated at various opening degrees. The three-dimensional simulation results shown that there are vortexes presented near valve back region as the opening degree smaller than 40 degree; the flow resistance coefficient reduces rapidly with the increasing of opening degree and the resistance coefficient is quite small as the angle larger than 50 degree; the hydrodynamic torque reduces with the increasing of opening degree and the hydrodynamic torque is smaller than 20% of maximum torque; the torque ratio and the pressure drop ratio are reduce with the increasing of opening degree, the pressure drop ratio reduces rapidly as the opening degree is smaller than 50 degree.

2021 ◽  
pp. 163-172
Author(s):  
Junxiang Gao ◽  
Xiaoliang Gao ◽  
Wei Zou

Taking the lubrication system of rotary tillage engine as the research object, this paper makes a three-dimensional simulation study on the oil flow characteristics in the lubricating oil passage. The oil supply of the oil pump shall be greater than the circulating oil required by the lubrication system to ensure the lubrication of the rotary cultivator. Lubrication system is an important part to ensure the reliability and durability of rotary cultivator. The key component to achieve its performance is the oil pump. The geometric model of lubricating oil flow field in rotary tiller lubrication system is established by using FLUENT software. The results show that the pressure drop in the lubricating oil passage of the main bearing is the largest under the same working conditions. In the oil passage of the cylinder head, the pressure drop of the front main oil passage is the largest and the oil discharge is the largest. Add 1.6mm oil pump rotor on the basis of the thickness of the original oil pump rotor, the oil flow at the connecting rod nozzle reaches the flow index of the original rotary cultivator, and there is no cylinder pulling phenomenon of the rotary cultivator.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251943
Author(s):  
Shixian Wu ◽  
Heqing Liu ◽  
Yongping Chen

In this study, a novel air-ring flow regulating valve was proposed to reduce the flow resistance caused by valve structural pressure drop in fluid transportation pipeline system. The regulating characteristics at different valve openings were analyzed by numerical method and the results were compared with the center butterfly valve which is most widely applied in fluid transportation pipeline system. Besides, an experimental system was designed to validate the numerical model in the present study. The results indicated that the simulation results agree well with experimental data. The resistance coefficient of the air-ring flow regulating valve is smaller than that of the center butterfly valve when the valve opening is greater than 67%, and the resistance coefficient is reduced by up to 100% as the valve is fully opened. Both valves maintain approximately equal percentage flow characteristics, the deviation in relative flow coefficient is small. In addition, the wall shear stress of the air-ring flow regulating valve is much smaller than that of the center butterfly valve at the same valve opening, and the maximum velocity in the pipeline system is always smaller than that of the center butterfly valve, which significantly reduces valve surface abrasive erosion and thus prolongs its service life.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4596
Author(s):  
Piotr Bogusław Jasiński

The presented paper, which is the first of two parts, shows the results of numerical investigations of a heat exchanger channel in the form of a cylindrical tube with a thin insert. The insert, placed concentrically in the pipe, uses the phenomenon of thermal radiation absorption to intensify the heat transfer between the pipe wall and the gas. Eight geometric configurations of the insert size were numerically investigated using CFD software, varying its diameter from 20% to 90% of the pipe diameter and obtaining the thermal-flow characteristics for each case. The tests were conducted for a range of numbers Re = 5000–100,000 and a constant temperature difference between the channel wall and the average gas temperature of ∆T = 100 °C. The results show that the highest increase in the Nu number was observed for the inserts with diameters of 0.3 and 0.4 of the channel diameter, while the highest flow resistance was noted for the inserts with diameters of 0.6–0.7 of the channel diameter. The f/fs(Re) and Nu/Nus(Re) ratios are shown on graphs indicating how much the flow resistance and heat transfer increased compared to the pipe without an insert. Two methods of calculating the Nu number are also presented and analysed. In the first one, the average fluid temperature of the entire pipe volume was used to calculate the Nu number, and in the second, only the average fluid temperature of the annular portion formed by the insert was used. The second one gives much larger Nu/Nus ratio values, reaching up to 8–9 for small Re numbers.


Author(s):  
Timo Saksala ◽  
Reijo Kouhia ◽  
Ahmad Mardoukhi ◽  
Mikko Hokka

This paper presents a numerical study on thermal jet drilling of granite rock that is based on a thermal spallation phenomenon. For this end, a numerical method based on finite elements and a damage–viscoplasticity model are developed for solving the underlying coupled thermo-mechanical problem. An explicit time-stepping scheme is applied in solving the global problem, which in the present case is amenable to extreme mass scaling. Rock heterogeneity is accounted for as random clusters of finite elements representing rock constituent minerals. The numerical approach is validated based on experiments on thermal shock weakening effect of granite in a dynamic Brazilian disc test. The validated model is applied in three-dimensional simulations of thermal jet drilling with a short duration (0.2 s) and high intensity (approx. 3 MW m −2 ) thermal flux. The present numerical approach predicts the spalling as highly (tensile) damaged rock. Finally, it was shown that thermal drilling exploiting heating-forced cooling cycles is a viable method when drilling in hot rock mass. This article is part of the theme issue ‘Fracture dynamics of solid materials: from particles to the globe’.


Author(s):  
Auro Ashish Saha ◽  
Sushanta K. Mitra

A three-dimensional numerical simulation of flow in patterned microchannel with alternate layers of hydrophilic and hydrophobic surfaces at the bottom wall is studied here. Surface characteristics of the microchannel are accounted by specifying the contact angle and the surface tension of the fluid. Meniscus profiles with varying amplitude and shapes are obtained under the different specified surface conditions. Flow instability increases as the fluid at the bottom wall traverses alternately from hydrophilic region to hydrophobic region. To understand the surface tension effect of the side walls, a two-dimensional numerical study has also been carried out for the microchannel and the results are compared with three-dimensional simulation. The surface tension effect of the side walls enhances the capillary effect for three-dimensional case.


Author(s):  
Akram Ghanem ◽  
Thierry Lemenand ◽  
Dominique Della Valle ◽  
Hassan Peerhossaini

A numerical investigation of chaotic laminar flow and heat transfer in isothermal-wall square-channel configurations is presented. The computations, based on a finite-volume method with the SIMPLEC algorithm, are conducted in terms of Péclet numbers ranging from 7 to 7×105. The geometries, based on the split-and-recombine (SAR) principle, are first proposed for micromixing purposes, and are then optimized and scaled up to three-dimensional minichannels with 3-mm sides that are capable of handling industrial fluid manipulation processes. The aim is to assess the feasibility of this mass- and heat-transfer technique for out-of-laboratory commercial applications and to compare different configurations from a process intensification point of view. The effects of the geometry on heat transfer and flow characteristics are examined. Results show that the flux recombination phenomenon mimicking the baker’s transform in the SAR-1 and SAR-2 configurations produces chaotic structures and promotes mass transfer. This phenomenon also accounts for higher convective heat transfer exemplified by increased values of the Nusselt number compared to the chaotic continuous-flow configuration and the baseline plain square-duct geometry. Energy expenditures are explored and the overall heat transfer enhancement factor for equal pumping power is calculated. The SAR-2 configuration reveals superior heat-transfer characteristics, enhancing the global gain by up to 17-fold over the plain duct heat exchanger.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Damena D. Agonafer ◽  
J. Yeom ◽  
M. A. Shannon

Microposts are utilized to enhance heat transfer, adsorption/desorption, and surface chemical reactions. In a previous study [Yeom et al., J. Micromech. Microeng., 19, p. 065025 (2009)], based in part on an experimental study, an analytical expression was developed to predict the pressure drop across a microchannel filled with arrays of posts with the goal of fabricating more efficient micro-total analysis systems (µTAS) devices for a given pumping power. In particular, a key figure of merit for the design of micropost-filled reactors, based on the flow resistance models was reported thus providing engineers with a design rule to develop efficient µTAS devices. The study did not include the effects of the walls bounding the microposts. In this paper, a three-dimensional computational fluid dynamics model is used to include the effects of three-dimensionality brought about by the walls of the µTAS devices that bound the microposted structures. In addition, posts of smaller size that could not be fabricated for the experiments were also included. It is found that the two- and three-dimensional effects depend on values of the aspect ratio and the blockage ratios. The Reynolds number considered in the experiment that ranged from 1 to 10 was extended to 300 to help determine the range of Re for which the FOM model is applicable.


2014 ◽  
Vol 694 ◽  
pp. 187-192
Author(s):  
Jin Xiang Wu ◽  
Jian Sun ◽  
Xiang Gou ◽  
Lian Sheng Liu

The three-dimensional coupled explicit Reynolds Averaged Navier–Stokes (RANS) equations and the two equation shear-stress transport k-w (SST k-w) model has been employed to numerically simulate the cold flow field in a special-shaped cavity-based supersonic combustor. In a cross-section shaped rectangular, hypersonic inlet with airflow at Mach 2.0 chamber, shock structures and flow characteristics of a herringbone-shaped boss and a herringbone-shaped cavity models were discussed, respectively. The results indicate: Firstly, according to the similarities of bevel-cutting shock characteristics between the boss case and the cavity case, the boss structure can serve as an ideal alternative model for shear-layer. Secondly, the eddies within cavity are composed of herringbone-spanwise vortexes, columnar vortices in the front and main-spanwise vortexes in the rear, featuring tilting, twisting and stretching. Thirdly, the simulated bottom-flow of cavity is in good agreement with experimental result, while the reverse flow-entrainment resulting from herringbone geometry and pressure gradient. However, the herringbone-shaped cavity has a better performance in fuel-mixing.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Xin Yan ◽  
Jun Li ◽  
Zhenping Feng

Numerical investigations on the rotordynamic characteristics of a typical hole-pattern seal using transient three-dimensional Reynolds-averaged Navier–Stokes (RANS) solution and the periodic circular orbit model were conducted in this work. The unsteady solutions combined with mesh deformation method were utilized to solve the three-dimensional RANS equations and obtain the transient reaction forces on a typical hole-pattern seal rotor at five different excitation frequencies. The relation between the periodic reaction forces and frequency dependent rotordynamic coefficients of the hole-pattern seal was obtained by considering the rotor with a periodic circular orbit (including forward orbit and backward orbit) of the seal center. The rotordynamic coefficients of the hole-pattern seal were then solved based on the obtained unsteady reaction forces and presented numerical method. Compared with the experimental data, the predicted rotordynamic coefficients of the hole-pattern seal are more agreeable with the experiment than that of the ISO-temperature (ISOT) bulk flow analysis and numerical approach with one-direction-shaking model. Furthermore, the unsteady leakage flow characteristics in the hole-pattern seal were also illustrated and discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document