Genetic Algorithm Optimization on a Venting System With Three-Chamber Hybrid Mufflers Within a Constrained Back Pressure and Space

2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Min-Chie Chiu

Recently, research on new techniques for dissipative mufflers in dealing with the higher frequencies has been addressed. However, the shape optimization of hybrid mufflers in reducing broadband noise within a constrained space as well as a pressure-drop limit which are both concerned with the necessity of operation and system venting in practical engineering work was rarely tackled. Therefore, this study will not only analyze the sound transmission loss (STL) of a space-constrained multichamber hybrid muffler but also optimize the best design shape under a specified pressure drop. In this paper, the generalized decoupling technique and plane wave theory used to solve the coupled acoustical problem of perforated mufflers with/without sound absorbing material are presented. The four-pole system matrix used to evaluate acoustic performance is also introduced in conjunction with a genetic algorithm (GA). A numerical case for eliminating a broadband venting noise emitted from a pressure relief valve using four kinds of hybrid mufflers is also introduced. To verify the reliability of the GA optimization, optimal noise abatement for a pure tone (1000 Hz) is exemplified. Before the GA operation can be carried out, the accuracy of the mathematical models need to be checked using the experimental data. The optimal result in eliminating broadband noise reveals that the overall noise reductions with respect to various mufflers under a maximal allowable pressure drop of 100 Pa can achieve 62.6, 54.8, 32.3 and 87.8 dB. Consequently, the approach used for the optimal design of the multichamber hybrid mufflers under space and back pressure constrained conditions is indeed easy and quite effective.

2011 ◽  
Vol 27 (3) ◽  
pp. 321-335 ◽  
Author(s):  
Y.-C. Chang ◽  
M.-C. Chiu

ABSTRACTResearch on new techniques of side-inlet/outlet mufflers equipped with internal non-perforated intruding tubes has been discussed in recent literature; however, the research work of multi-chamber sideinlet/outlet mufflers in conjunction with cross-flow tubes and open-ended perforated intruding tubes which may efficiently increase the acoustical performance is rare. Therefore, the main purpose of this paper is not only to analyze the sound transmission loss (STL) of three kinds of side-inlet/outlet mufflers (a three-chamber muffler with cross-flow tubes, a five-chamber muffler with cross-flow tubes and a nonperforated tube, and a five-chamber muffler with cross-flow tubes and a perforated tube) but also to optimize their best design shape within a limited space.In this paper, both the generalized decoupling technique and plane wave theory in solving the coupled acoustical problem are used. A four-pole system matrix in evaluating the acoustic performance is also deduced in conjunction with a simulated algorithm (SA). A numerical case in finding the optimal STL of mufflers, which is constrained within a basement with a side-inlet/outlet, at targeted tones has been introduced. Before the optimization is carried out, an accuracy check of the mathematical model is performed. Results reveal that the maximal STL is precisely located at the desired target tone. Moreover, it has been seen that mufflers with more chambers will increase the acoustic performance for both pure tone and broadband noise. Additionally, the acoustical performance of mufflers conjugated with perforated intruding tubes is superior to those equipped with non-perforated tubes.Consequently, the approach used for seeking the optimal design of the STL proposed in this study is indeed easy and quite effective.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ran Tao ◽  
Ruofu Xiao ◽  
Wei Yang ◽  
Fujun Wang ◽  
Weichao Liu

Cavitation is a negative factor of hydraulic machinery because of its undesirable effects on the operation stability and safety. For reversible pump-turbines, the improvement of cavitation inception performance in pump mode is very important due to the strict requirements. The geometry of blade leading edge is crucial for the local flow separation which affects the scale and position of pressure drop. Hence, the optimization of leading edge shape is helpful for the improvement of cavitation inception performance. Based on the genetic algorithm, optimization under multiple flow rate conditions was conducted by modifying the leading edge ellipse ratio and blade thickness on the front 20% meanline. By using CFD simulation, optimization was completed with obvious improvements on the cavitation inception performance. CFD results show that the pressure drop location had moved downstream with the increasement of the minimum pressure coefficient. Experimental verifications also got an obvious enhancement of cavitation inception performance. The stability and safety was improved by moving the cavitation inception curve out of the operating range. This optimization is proved applicable and effective for the engineering applications of reversible pump-turbines.


Author(s):  
Rong Guo ◽  
Wen-bo Tang ◽  
Wei-wei Zhu

A multi-chamber perforated resonator is a type of silencer which can attenuate broadband noise. In order to address the noise issues originating from the intake system of a turbocharged engine, measurement tests are carried out to characterize the range and the amplitudes of the noise frequencies. A transfer matrix method and a non-linear least-squares optimization algorithm are combined in order to design the multi-chamber perforated resonator. A transmission loss test facility is designed on the basis of the two-load method so as to validate the acoustic performance of the resonator. Despite the difference between the amplitude of the transmission loss from the tests and the amplitude of the transmission loss obtained by the transfer matrix method, the shapes of the two curves have the same trend, and the measured transmission loss can meet the design target in the frequency range of interest. From the comparison between the intake noise spectrum with the resonator and the intake noise spectrum without the resonator, it can be seen that this resonator can efficiently attenuate the broadband intake noise of the engine. Also, a computational fluid dynamics flow simulation analysis of the intake system with the resonator is made so that its flow characteristics can be studied. The simulation results show that the air pressure drop of this resonator is slightly higher than that of the straight pipes but is still relatively low. It is also noted that the diameter and the curvature of the pipes have a great influence on the air velocity as well as on the pressure drop.


2011 ◽  
Vol 27 (4) ◽  
pp. 533-544 ◽  
Author(s):  
M.-C. Chiu ◽  
Y.-C. Chang

ABSTRACTResearch on new techniques of multi-chamber mufflers equipped with a side inlet and internal nonperforated intruding tubes has been discussed in recent literature; however, the research work of multichamber mufflers in conjunction with side inlet and open-ended perforated intruding tubes which may efficiently increase the acoustical performance has been neglected. Therefore, the main purpose of this paper is to optimize the best design shape of multi-chamber side mufflers with open-ended perforated intruding tubes within a limited space.In this paper, the four-pole system matrix in evaluating the acoustic performance is also deduced in conjunction with a simulated algorithm (SA). Results reveal that the maximum sound transmission loss (STL) is precisely located at the desired target tone. In addition, the acoustical performance of mufflers conjugated with perforated intruding tubes is superior to those equipped with non-perforated tubes. Additionally, the noise reduction ability for a three-chamber side muffler with a non-perforated intruding tube and a two-chamber side muffler with perforated intruding tubes are equivalent. Moreover, mufflers with more chambers will increase the acoustic performance for both pure tone and broadband noise.


2021 ◽  
pp. 107754632110016
Author(s):  
Guo Long ◽  
Yawen Wang ◽  
Teik C Lim

Active noise control systems are generally application-specific, and an appropriate algorithm with an optimal configuration is desirable in the first stage of active noise control system design and deployment. This study presents a design of the subband active noise control system with optimal parameters for a practical broadband active noise control. Although the delayless subband active noise control has gained wide attention for broadband noise cancellation, an optimal design remains a challenge because of the complex interplay between multiple factors such as spectral leakage, delay and weight stacking distortion subject to a number of configurable parameters, and weight stacking method. The configurable parameters can hardly be optimized independently because the active noise control performance depends on the combined configuration. A simple near black box active noise control algorithm optimization model is thus established by incorporating the genetic algorithm optimization into the parametric design of the delayless subband algorithm. The automated process does not require an understanding of the performance characteristics for different parameters. The significance of applying the automated genetic algorithm optimization to the complex multiparameter nonlinear active noise control design is revealed by numerical simulations, particularly for the multichannel low-frequency broadband active noise control system configured with the delayless subband algorithms. This provides a way for the optimal parametric design of subband active noise control before being used in a practical complex scenario.


2017 ◽  
Vol 36 (1) ◽  
pp. 3-26 ◽  
Author(s):  
Min-Chie Chiu

Enormous effort has been applied to research on mufflers hybridized with a single perforated plug tube; nonetheless, mufflers conjugated with multiple parallel perforated plug tubes that disperse venting fluid and reduce secondary noise have been overlooked. To this end, an analysis of the sound transmission loss of two-chamber mufflers with multiple parallel perforated plug tubes that are optimally designed to perform within a limited space will be presented. Here, using a decoupled numerical method, a four-pole system matrix for evaluating acoustic performance (sound transmission loss) is derived. During the optimization process, a simulated annealing method, which is a robust scheme utilized to search for the global optimum by imitating a physical annealing process, is used. Prior to dealing with a broadband noise, the sound transmission loss’s maximization relative to a one-tone noise (200 Hz) is produced to check the simulated annealing method’s reliability. The mathematical model is also confirmed for accuracy. To understand the acoustical effects brought about by the various tubes (perforated tubes, internally extended non-perforated tubes, and non-perforated tubes), mufflers with internally extended non-perforated tubes and non-perforated tubes have been evaluated. The optimization of three kinds of two-chamber mufflers hybridized with one, two, and four perforated plug tubes have also been compared. The results are revealing: the acoustical performance of mufflers conjugated with more perforated plug tubes decreases as a result of the decrement of the acoustical function for acoustical elements (II) and (III). Accordingly, in order to design a better muffler, an advanced presetting of the maximum (allowable) flowing velocity is necessary before an appropriate number of perforated plug tubes can be chosen for the optimization process.


Author(s):  
Y-C Chang ◽  
M-C Chiu ◽  
M-M Cheng

Research on new techniques of perforated plug silencers has been well addressed. Most researchers have explored noise reduction effects based on a pure plane wave theory. However, the maximum noise reduction of a silencer under a space constraint, which frequently occurs in engineering problems, is rarely addressed. Therefore, the optimum design of mufflers becomes an essential issue. In this paper, to save the design time during the flexible optimum process, a simplified mathematical model of a muffler is constructed with a neural network with a series of real data — input design data (muffle dimensions) and output data (theoretical sound transmission loss (STL)) were approximated by a theoretical mathematical model (TMM) in advance. To assess the optimal mufflers, the neural network model (NNM) is used as an objective function in conjunction with a genetic algorithm (GA). Moreover, the numerical cases of sound elimination with respect to various parameter sets and pure tones (500, 1000, and 2000 Hz) are exemplified and discussed. Before the GA operation is carried out, the approximation between TMM and real data is checked. In addition, both the TMM and NNM are compared. It is found that the TMM and the experimental data are in agreement. Moreover, the TMM and NNM conform. Optimal results reveal that the maximum amount of the STL can be optimally obtained at the desired frequencies. Consequently, the optimum algorithm proposed in this study can provide an efficient method to develop optimal silencers in industry.


Author(s):  
Min-Chie Chiu

Because of the necessity of maintenance and operation in industries in which the equipment layout is occasionally tight, the space for a muffler is constrained. An interest in maximizing the acoustical performance of mufflers within a limited space is of paramount importance. As mufflers hybridized with reverse-flow ducts may visibly increase acoustical performance, the main purpose of this paper is to numerically analyze and maximize their acoustical performance within a limited space. In this paper, a four-pole system matrix for evaluating the acoustic performance —sound transmission loss (STL)— is derived by using a decoupled numerical method. Moreover, simulated annealing (SA), a robust scheme used to search for the global optimum by imitating the metal annealing process, has been used during the optimization process. Before dealing with a broadband noise, the STL’s maximization with respect to a one-tone noise (300 Hz) is introduced for a reliability check on the SA method. Moreover, an accuracy check of the mathematical model is performed. Results reveal that the STL of a muffler with reverse-flow perforated ducts can be maximized at the desired frequency for pure tone elimination; moreover, the noise reduction for a broadband noise can reach 97.5 dB. Consequently, the approach used for the optimal design of the mufflers is simple and effective.


Author(s):  
Y-C Chang ◽  
L-J Yeh ◽  
M-C Chiu

In an effort to meet the demands of operation and maintenance inside a constrained machine room, the volume of the muffler system is often compromised. Therefore, the need to enhance the level of muffler performance under limited space conditions becomes even more expedient in the field of practical engineering work. The present paper proposes a novel scheme for the shape optimization of double-chamber mufflers by using a genetic algorithm (GA). The new approach utilizes the four-pole transfer matrix - a technique for evaluating the sound transmission loss (STL) on the basis of plane wave theory - in conjunction with the GA method. A numerical case of the sound elimination of pure tone is discussed in this study. To achieve optimization in the GA, several test parameter values were used. Results showed that the maximum value of the STL was optimally obtained at the desired frequency of 250 Hz. The approach used in this study for optimum design of the STL is both easy and quite effective.


Sign in / Sign up

Export Citation Format

Share Document