A Rolling Contact Fatigue Reliability Evaluation Method and its Application to a Slewing Bearing

2012 ◽  
Vol 134 (1) ◽  
Author(s):  
Gao Xue Hai ◽  
Huang Xiao Diao ◽  
Hong Rong Jing ◽  
Wang Hua ◽  
Chen Jie

Rolling contact fatigue (RCF) corresponds to the formation of the first spall, which is a stochastic behavior; therefore, the RCF life should be reliably calculated. A method for evaluating RCF reliability was developed based on the Lundberg-Palmgren theory and ISO 281. The method took into consideration the contact load, the geometric parameters of contact pairs, the oscillation amplitude, the RCF reliability and the material properties. Because the method was derived from a widely accepted theory and empirical standards, it can be used for engineering applications. Finally, the RCF reliability of a slewing bearing under complex operating conditions was determined using the developed method.

2005 ◽  
Vol 127 (3) ◽  
pp. 611-622 ◽  
Author(s):  
D. Nélias ◽  
C. Jacq ◽  
G. Lormand ◽  
G. Dudragne ◽  
A. Vincent

A new methodology is proposed to evaluate the rolling contact fatigue (RCF) performance of bearing steels in presence of surface dents. The experimental procedure consists of denting the raceway of test specimens with a hardness machine using spherical diamond tips of different radii (i.e., 200, 400, and 600μm) and with an applied normal load ranging from 5to50daN. Analysis of various dent geometries yield an analytical law with five parameters useful for fitting experimental profiles for contact simulation. Fatigue tests are conducted using a two-disk machine to study the effect of different operating conditions on RCF and to compare the performances of nitrided 32CrMoV13 steel versus M50 reference steel. A numerical investigation is conducted to analyze experimental result. Initially, the local residual stresses and plastic strains around the dent are obtained through finite element simulations of the indentation process. Second, the overrolling of the dent is simulated with a contact code. Finally, an indent-based endurance limit, called H1I, is proposed and comparisons are made with test results. Both RCF tests and numerical simulations show improved performance with nitrided 32CrMoV13 steel when compared to the M50 reference steel. The dominating role of sliding is also experimentally highlighted and two areas of damage initiation are identified. The effects of normal load and hoop stress are less marked.


2014 ◽  
Vol 57 (3) ◽  
pp. 533-545 ◽  
Author(s):  
Bryan Allison ◽  
Ghatu Subhash ◽  
Nagaraj Arakere ◽  
David A. Haluck ◽  
Herb Chin

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Nick Weinzapfel ◽  
Farshid Sadeghi ◽  
Vasilios Bakolas ◽  
Alexander Liebel

Rolling contact fatigue of rolling element bearings is a statistical phenomenon that is strongly affected by the heterogeneous nature of the material microstructure. Heterogeneity in the microstructure is accompanied by randomly distributed weak points in the material that lead to scatter in the fatigue lives of an otherwise identical lot of rolling element bearings. Many life models for rolling contact fatigue are empirical and rely upon correlation with fatigue test data to characterize the dispersion of fatigue lives. Recently developed computational models of rolling contact fatigue bypass this requirement by explicitly considering the microstructure as a source of the variability. This work utilizes a similar approach but extends the analysis into a 3D framework. The bearing steel microstructure is modeled as randomly generated Voronoi tessellations wherein each cell represents a material grain and the boundaries between them constitute the weak planes in the material. Fatigue cracks initiate on the weak planes where oscillating shear stresses are the strongest. Finite element analysis is performed to determine the magnitude of the critical shear stress range and the depth where it occurs. These quantities exhibit random variation due to the microstructure topology which in turn results in scatter in the predicted fatigue lives. The model is used to assess the influence of (1) topological randomness in the microstructure, (2) heterogeneity in the distribution of material properties, and (3) the presence of inherent material flaws on relative fatigue lives. Neither topological randomness nor heterogeneous material properties alone account for the dispersion seen in actual bearing fatigue tests. However, a combination of both or the consideration of material flaws brings the model’s predictions within empirically observed bounds. Examination of the critical shear stress ranges with respect to the grain boundaries where they occur reveals the orientation of weak planes most prone to failure in a three-dimensional sense that was not possible with previous models.


Author(s):  
F Ville ◽  
S Coulon ◽  
A. A. Lubrecht

Solid contamination of lubricants is one of the main causes of premature rolling contact fatigue of machine elements (e.g. rolling element bearings in automotive gearboxes). Understanding the indentation process (creation of surface defect by debris passing through the contact) and the surface damage initiation allows the prediction of the induced risk. This article summarizes the work of the authors and proposes a risk prediction on the basis of operating conditions and dent geometry.


Lubricants ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 100
Author(s):  
Gerald Trummer ◽  
Zing Siang Lee ◽  
Roger Lewis ◽  
Klaus Six

The coefficient of friction between a wheel tread and the top of the rail should be maintained at intermediate levels to limit frictional tangential contact forces. This can be achieved by applying top-of-rail products. Reducing the coefficient of friction to intermediate levels reduces energy consumption and fuel costs, as well as damage to the wheel and rail surfaces, such as, e.g., wear, rolling contact fatigue, and corrugation. This work describes a simulation model that predicts the evolution of the coefficient of friction as a function of the number of wheel passes and the distance from the application site for wayside application of top-of-rail products. The model considers the interplay of three mechanisms, namely the pick-up of product by the wheel at the application site, the repeated transfer of the product between the wheel and rail surfaces, and the product consumption. The model has been parameterized with data from small-scale twin disc rig experiments and full-scale wheel–rail rig experiments. Systematic investigations of the model behaviour for a railway operating scenario show that all three mechanisms may limit the achievable carry-on distance of the product. The developed simulation model assists in understanding the interplay of the mechanisms that govern the evolution of the coefficient of friction in the field. It may aid in finding optimal product application strategies with respect to application position, application amount, and application pattern depending on specific railway operating conditions.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Arthur Francisco ◽  
Houssein Abbouchi ◽  
Bernard Villechaise

The background of the present study is the rolling contact fatigue (RCF) in a brittle polymer disk. The disk has been tested on a two disk machine, under controlled normal and tangential loads, with no global slip. After several million cycles and under different operating conditions, it has been observed that (1) the tangential load highly influences the RCF phenomenon, (2) a network of regularly spaced cracks appears, and (3) in the driving position, the RCF phenomenon develops faster. To explain these observations, a numerical model based on the finite element method (FEM) has been built: the cracks have been quite simply modeled, stick-slip has been chosen as the friction model, and the disk-on-disk contact has been replaced by a disk-on-plane contact. To study the influence of some of the operating conditions, the design of experiments (DOE) techniques has been used. The statistical postprocessing associated to DOE has confirmed the experimental observations with a good reliability. In addition, with some mechanical considerations, scenarios of what experimentally happens are proposed. The association FEM/DOE is an original and efficient way to explain phenomena in the field of RCF: the accuracy of the FEM coupled with DOE statistical treatments make it possible to have a good predictability despite some uncontrolled parameters.


Sign in / Sign up

Export Citation Format

Share Document