Mechanical Behavior of Internally Pressurized Copper Tube for New HVACR Applications

2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Frank F. Kraft ◽  
Tommy L. Jamison

This paper reviews and simplifies basic theory to predict plastic strain and burst pressure of internally pressurized, thin-walled copper tube for (heating, ventilation, air conditioning, and refrigeration applications. Predictions are based upon material stress–strain data obtained from basic tensile tests. A series of pressure tests was performed at 635 to 1500 psi (4.38–10.34 MPa), and until burst, on tubes ranging from 0.625 in. (15.87 mm) to 2.125 in. (53.97 mm) in diameter. A Voce type equation is shown to provide superior correlation to tensile and instability data, such that accurate projections can be made. An assessment of the classical power-law (Ludwik–Hollomon) equation is also presented, and it did not simultaneously correlate well with stress–strain data and satisfy the Considère instability criterion in uni-axial tension. Nevertheless, its use still led to reasonably accurate burst pressure predictions due to the strain range over which it was applied. Property variation (with respect to tube size) and anisotropy were observed in the transverse and axial tube directions for 1.125 in. (28.6 mm) and 2.125 in. (54.0 mm) diameter tube. Thus, the importance of representative and accurate material data in the transverse (hoop) direction is emphasized.

2000 ◽  
Vol 653 ◽  
Author(s):  
Mikael Nygårds ◽  
Dilip Chandrasekaran ◽  
Peter Gudmundson

AbstractA two-dimensional micromechanical model based on the finite element method is presented to model two-phase ferritic/pearlitic steels, by aid of generalised plane strain elements. A periodic representative cell containing 100 ferrite grains, and the desired fraction pearlite is used. By applying periodic boundary conditions, loading by an average stress or strain state is possible.Uniaxial tensile tests were performed on specimens containing the ferrite and pearlite microstructures, and on two-phase materials containing 25% and 58% pearlite respectively. The stress-strain data of the pearlite material is used to fit a laminar dependent Taylor relation to represent the pearlite workhardening. Thereafter, laminar spacings in the two-phase materials are measured, and the total stress-strain response of the materials is modelled. Comparisons between generated data and experiments show good agreement up to a strain of 2%.


1957 ◽  
Vol 30 (2) ◽  
pp. 555-571 ◽  
Author(s):  
L. Mullins ◽  
N. R. Tobin

Abstract One of the more important advances in rubber science during the past twenty years has been the development of quantitative theories describing the elastic properties of pure-gum vulcanized rubbers. As a result it is now possible to account for their equilibrium stress-strain behavior with considerable success. There is, however, no adequate theory to describe the elastic properties of filler-reinforced rubber vulcanizates and the work described herein is an attempt to provide a basis for such a theory. When a reinforcing filler is added to rubber it produces a large increase in the stiffness of the vulcanizate. This increase is reduced and may be substantially destroyed by deformation. Numerous attempts have been made to describe the increase of stiffness resulting from the introduction of fillers and relationships describing the dependence of the modulus on the concentration and particle shape of the filler have been developed. However, these do not take into account the softening which results from previous deformation and thus have limited applicability. Recently Blanchard and Parkinson have attempted to develop empirical relationships to describe the elastic properties in simple extension of reinforced rubber vulcanizates after they have been previously deformed. They started with the appropriate stress-strain relationships from the classical kinetic theory and introduced two curve-fitting parameters to describe stress-strain data obtained in conventional tensile tests on a Goodbrand machine. In this way they were able to fit the course of the stress-strain data obtained after previous extension at extensions less than those previously applied and to describe the dependence of the parameters on previous deformation. Unfortunately, the significance of the parameters is obscure.


1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


2021 ◽  
Vol 111 ◽  
pp. 102637
Author(s):  
Zhan-Feng Chen ◽  
Wen Wang ◽  
He Yang ◽  
Sun-Ting Yan ◽  
Zhi-Jiang Jin

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 474
Author(s):  
Silvia Todros ◽  
Silvia Spadoni ◽  
Edoardo Maghin ◽  
Martina Piccoli ◽  
Piero G. Pavan

Muscular tissue regeneration may be enhanced in vitro by means of mechanical stimulation, inducing cellular alignment and the growth of functional fibers. In this work, a novel bioreactor is designed for the radial stimulation of porcine-derived diaphragmatic scaffolds aiming at the development of clinically relevant tissue patches. A Finite Element (FE) model of the bioreactor membrane is developed, considering two different methods for gripping muscular tissue patch during the stimulation, i.e., suturing and clamping with pliers. Tensile tests are carried out on fresh and decellularized samples of porcine diaphragmatic tissue, and a fiber-reinforced hyperelastic constitutive model is assumed to describe the mechanical behavior of tissue patches. Numerical analyses are carried out by applying pressure to the bioreactor membrane and evaluating tissue strain during the stimulation phase. The bioreactor designed in this work allows one to mechanically stimulate tissue patches in a radial direction by uniformly applying up to 30% strain. This can be achieved by adopting pliers for tissue clamping. Contrarily, the use of sutures is not advisable, since high strain levels are reached in suturing points, exceeding the physiological strain range and possibly leading to tissue laceration. FE analysis allows the optimization of the bioreactor configuration in order to ensure an efficient transduction of mechanical stimuli while preventing tissue damage.


1986 ◽  
Vol 59 (1) ◽  
pp. 138-141 ◽  
Author(s):  
Robert A. Hayes

Abstract A two-solvent method for determining the polymer-solvent interaction parameters independently of stress-strain data is described. The values obtained are much lower than those reported previously. Network densities calculated from swelling data and these interaction parameters are in good agreement with those calculated from the return portion of a hysteresis loop at high elongations.


2015 ◽  
Vol 1089 ◽  
pp. 37-41
Author(s):  
Jiang Wang ◽  
Sheng Li Guo ◽  
Sheng Pu Liu ◽  
Cheng Liu ◽  
Qi Fei Zheng

The hot deformation behavior of SiC/6168Al composite was studied by means of hot compression tests in the temperature range of 300-450 °C and strain rate range of 0.01-10 s-1. The constitutive model was developed to predict the stress-strain curves of this composite during hot deformation. This model was established by considering the effect of the strain on material constants calculated by using the Zenter-Hollomon parameter in the hyperbolic Arrhenius-type equation. It was found that the relationship of n, α, Q, lnA and ε could be expressed by a five-order polynomial. The stress-strain curves obtained by this model showed a good agreement with experimental results. The proposed model can accurately describe the hot flow behavior of SiC/6168Al composite, and can be used to numerically analyze the hot forming processes.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3626
Author(s):  
Łukasz Hojdys ◽  
Piotr Krajewski

This paper presents the results of direct tensile tests performed on six different FRCM (fabric reinforced cementitious matrix) strengthening systems used for masonry structures. The emphasis was placed on the determination of the mechanical parameters of each tested system and a comparison of their tensile behaviour in terms of first crack stress, ultimate stress, ultimate strain, cracking pattern, failure mode and idealised tensile stress-strain curve. In addition to the basic mechanical tensile parameters, accidental load eccentricities, matrix tensile strengths, and matrix modules of elasticity were estimated. The results of the tests showed that the tensile behaviour of FRCM composites strongly depends on the parameters of the constituent materials (matrix and fabric). In the tests, tensile failure of reinforcement and fibre slippage within the matrix were observed. The presented research showed that the accidental eccentricities did not substantially affect the obtained results and that the more slender the specimen used, the more consistent the obtained results. The analysis based on a rule of mixtures showed that the direct tensile to flexural tensile strength ratio of the matrixes used in the test was 0.2 to 0.4. Finally, the tensile stress–strain relationship for the tested FRCMs was idealised by a bi- or tri-linear curve.


Author(s):  
Kristian Krabbenhoft ◽  
J. Wang

A new stress-strain relation capable of reproducing the entire stress-strain range of typical soil tests is presented. The new relation involves a total of five parameters, four of which can be inferred directly from typical test data. The fifth parameter is a fitting parameter with a relatively narrow range. The capabilities of the new relation is demonstrated by the application to various clay and sand data sets.


Sign in / Sign up

Export Citation Format

Share Document