Weld Residual Stress in Various Large Diameter Nuclear Nozzles

2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Tao Zhang ◽  
Frederick W. Brust ◽  
Gery Wilkowski

Weld residual stresses in nuclear power plants can lead to cracking concerns caused by stress corrosion. Many factors can lead to the development of the weld residual stresses, and the distributions of the stress through the wall thickness can vary markedly depending on the weld processing parameters, nozzle and pipe geometries, among other factors. Hence, understanding the residual stress distribution is important in order to evaluate the reliability of pipe and nozzle welded joints. This paper represents an examination of the weld residual stress distributions which occur in different nozzles. The geometries considered here are large diameter thick wall pipe and nozzles. The detailed weld residual stress predictions for these nozzles are summarized. These results are categorized and organized in this paper and general trends for the causes of the distributions are established. The solutions are obtained using several different constitutive models including kinematic hardening, isotropic hardening, and mixed hardening model. Necessary fabrication procedures such as weld repair, overlay, and postweld heat treatment are also considered. The residual stress field can therefore be used to perform a crack growth and instability analysis. Some general discussions and comments are given in the paper.

Author(s):  
Tao Zhang ◽  
F. W. Brust ◽  
Gery Wilkowski

Weld residual stresses in nuclear power plant can lead to cracking concerns caused by stress corrosion. These are large diameter thick wall pipe and nozzles. Many factors can lead to the development of the weld residual stresses and the distributions of the stress through the wall thickness can vary markedly. Hence, understanding the residual stress distribution is important to evaluate the reliability of pipe and nozzle joints with welds. This paper represents an examination of the weld residual stress distributions which occur in various different size nozzles. The detailed weld residual stress predictions for these nozzles are summarized. Many such weld residual stress solutions have been developed by the authors in the last five years. These distributions will be categorized and organized in this paper and general trends for the causes of the distributions will be established. The residual stress field can therefore feed into a crack growth analysis. The solutions are made using several different constitutive models such as kinematic hardening, isotropic hardening, and mixed hardening model. Necessary fabrication procedures such as repair, overlay and post weld heat treatment are also considered. Some general discussions and comments will conclude the paper.


2013 ◽  
Vol 772 ◽  
pp. 65-71 ◽  
Author(s):  
Ondrej Muránsky ◽  
Cory J. Hamelin ◽  
Mike C. Smith ◽  
Phillip J. Bendeich ◽  
Lyndon Edwards

Constitutive plasticity theory is commonly applied to the numerical analysis of welds in one of three ways: using an isotropic hardening model, a kinematic hardening model, or a mixed isotropic-kinematic hardening model. The choice of model is not entirely dependent on its numerical accuracy, however, as a lack of empirical data will often necessitate the use of a specific approach. The present paper seeks to identify the accuracy of each formalism through direct comparison of the predicted and actual post-weld residual stress field developed in a three-pass 316LN stainless steel slot weldment. From these comparisons, it is clear that while the isotropic hardening model tends to noticeably over-predict and the kinematic hardening model slightly under-predict the residual post-weld stress field, the results using a mixed hardening model are quantitatively accurate. Even though the kinematic hardening model generally provides more accurate results when compared to an isotropic hardening formalism, the latter might be a more appealing choice to engineers requiring a conservative design regarding weld residual stress.


Author(s):  
Michael C. Smith ◽  
Brahim Nadri ◽  
Ann C. Smith ◽  
David G. Carr ◽  
Philip J. Bendeich ◽  
...  

A single weld bead deposited on a flat plate is a deceptively simple problem that is in practice a challenge for both measurement and prediction of weld residual stresses. Task Group 1 of the NeT collaborative network has examined this problem in an extensive programme of measurement and simulation extending from 2002 to 2008. As a result, the NeT bead on plate forms an ideal benchmark problem for the development of weld residual stress simulation techniques. One of the conclusions of NeT Task Group 1 is that the most accurate predictions of weld residual stresses in austenitic steels are achieved using mixed isotropic-kinematic material constitutive models. However, the use of these models can require both extensive materials data, and compromises in fitting either the monotonic or cyclic responses. This paper reports a detailed matrix of sensitivity studies aimed at optimising the behaviour of mixed hardening models in welding simulation, using the Lemaitre-Chaboche formulation in the ABAQUS finite element code. Predicted stresses and strains in the NeT bead on plate specimen are compared with the extensive database of residual stress measurements. Further studies examine sensitivity to the handling of high temperature inelastic strains, using a novel two-stage annealing functionality implemented within ABAQUS. The results show that, overall, the most accurate predictions are made if the Lemaitre-Chaboche parameters are optimised to fit the monotonic response over the first 2% of plastic strain. However, further improvements in prediction could be achieved if the constitutive model were capable of independently fitting both the monotonic and saturated cyclic response of the material.


Author(s):  
Dimosthenis Floros ◽  
Andreas Jobst ◽  
Andreas Kergaßner ◽  
Marion Merklein ◽  
Paul Steinmann

AbstractAn holistic view is attempted towards prediction of the effect of residual stresses induced by full-forward extrusion on fatigue life of workpieces during operation. To study the effect of constitutive model on the accuracy of forming simulations, a combined nonlinear isotropic/kinematic hardening model as well as the isotropic hardening part of the same model are calibrated based on five compression-tension-compression uniaxial stress experiments. A full-forward extrusion finite element model is developed adapting both the aforementioned hardening plasticity models and the predicted residual stress states at the surface of the workpiece are compared against that of a corresponding forming experiment. Results show residual stress predictions of remarkable accuracy by the FE-models with the isotropic hardening model. The effect of residual stresses on fatigue life of the workpiece is qualitatively studied by uncoupled multiscale simulations featuring gradient crystal plasticity at the microscale. While the effective (homogenized) macroscale response indicates elastic response during a macroscopically cyclic loading, plasticity accompanying reduction of residual stresses is still present at the microscale within, e.g. grain boundaries.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Luyang Geng ◽  
Shan-Tung Tu ◽  
Jianming Gong ◽  
Wenchun Jiang ◽  
Wei Zhang

Residual stress distributions as welded and after local postwelding heat treatment (PWHT) of butted weld joint of a huge cylinder with ultra-thick wall were investigated by finite element (FE) simulations and measurement. Sequential coupling thermal-mechanical analyses were conducted with a generalized plane strain two-dimensional (2D) model to simulate the welding procedure bead by bead, combining with three-dimensional (3D) double-ellipsoid moving heat source and mixed isotropic–kinematic hardening plastic model. The simulation was validated by X-ray diffraction (XRD) measurements. Simulation results showed that local PWHT with heated band width of 0.5Rt can significantly reduce the residual stress on the outer surface of weld joint, but bring about harmful high tensile stress on inner surface due to bending moment induced by local radial thermal distortion. For the purpose to find out the appropriate heated band width of local PWHT, relations between stress relief and size of heated band were studied. Results show that the stresses on the inner surface reach a maximum value when the heated band width is less than 1Rt. Based on the simulation results and from the view point of lowering the stress level on the inner surface, the optimum width of 3Rt for heated band was proposed.


2018 ◽  
Vol 165 ◽  
pp. 21004
Author(s):  
Jazeel R. Chukkan ◽  
Guiyi Wu ◽  
Michael E. Fitzpatrick ◽  
Elvin Eren ◽  
Xiang Zhang ◽  
...  

Residual stresses are a consequence of welding in various structures such as ships and offshore structures. Residual stresses can be relaxed or redistributed according to the load levels during operation. The elastic shakedown phenomenon can be considered as one of the reasons for this change. This paper studies the relaxation/redistribution of weld residual stress during different levels of shakedown in a butt-welded plate chosen according to ship design and welding procedures. Welding was performed on DH36, a ship structural steel. Neutron diffraction was used to measure residual stresses in these plates in the as-welded state and after different levels of shakedown. A mixed hardening model in line with the Chaboche model is determined for both weld and base material. A numerical model is developed to estimate the shakedown limit on butt-welded plate. Further, the redistribution of residual stress in a numerical weld model according to the different levels of shakedown limit is studied. Based on the shakedown limit of the butt-welded plate, a shakedown region is determined, where the structure will undergo elastic shakedown in the presence of an existing residual stress field if the maximum stress on the load section after a few initial cycles is in the shakedown region.


Author(s):  
Martina M. Joosten ◽  
Martin S. Gallegillo

The presence of residual stresses can significantly affect the performance of manufactured products. The welding process is one of the most common causes of large tensile residual stresses, which may contribute to failure by brittle fracture or cause other forms of failure such as damage by corrosion and creep. Welding is a widely used method of fabrication and it can generate high levels of residual stress over significant proportions of the thickness of a component. In order to study the effect of material characterisation on computer based predictions of welding residual stresses, the presented work was carried out as part of the European Network on Neutron Techniques Standardisation for Structural Integrity (NeT). Within the NeT, a task group is investigating a three-pass Tungsten Inert Gas (TIG) weld benchmark. The three-pass specimen offers the possibility of examining the cyclic hardening and annealing behaviour of the weld metal and heat affected zone. A 3D model of the benchmark NeT problem was set up using ABAQUS v6.9.1 and validated against measurements. This paper presents the finite element work. Future papers from the NeT shall present experimental measurements. Different hardening models were considered in order to study their effect on the residual stresses. The different hardening models were isotropic hardening, linear and nonlinear kinematic hardening and combinations of these. Also the effect of annealing on the hardening behaviour is studied. Finally, the results of the simulations are compared to residual stress distributions as given in several standards.


Author(s):  
Jonathan Mullins ◽  
Jens Gunnars

It is generally acknowledged that the material hardening model exerts a considerable effect on predicted weld residual stress fields. For this reason the choice of hardening model has attracted interest among analysts, particularly during recent validation studies. Nevertheless there is still lack of evidence for a hardening model which is generally applicable for all welding geometries. In this work we examine the predictions of nonlinear kinematic, isotropic and mixed hardening models for two different geometries: a single bead on plate weld, and a multi-bead girth weld. Hardening parameters are based on the same openly available mechanical test data. Deformation histories for the two welding geometries are presented. Predicted residual stress profiles are compared with experimental measurements. It is noted that nonlinear kinematic hardening results in good predictions for the single bead welding simulation where hardening in the weld and HAZ is dominated by a single heating and cooling cycle. Isotropic hardening results in good predictions for the 42 bead girth weld, where hardening in the weld and HAZ is heavily influenced by several heating and cooling cycles from the addition of several weld beads and where some relaxation of residual stress is possible. Mixed hardening can result in good predictions for both welding geometries. Additional strategies for development of material models based on isotropic and kinematic hardening and relevant test data are discussed with particular attention paid to intermediate weld geometries.


2000 ◽  
Vol 123 (2) ◽  
pp. 207-213 ◽  
Author(s):  
P. Dong

In this paper, detailed weld residual stress analyses are presented for a typical multi-pass girth weld in Type 316L stainless steel pipe with r/t ratio of 25. Advanced finite element procedures were used to simulate the residual stress development under controlled welding conditions associated with weld mock-ups. Both axisymmetric and 3-D special shell element models were used to reveal local residual stress details and global residual stress characteristics in the girth weld. Residual stress measurements using hole-drilling method were conducted for model validation on the laboratory weld mock-up welds. A good agreement between finite element predictions and experimental measurements were obtained. The major findings include: (a) Axial residual stresses within and near the weld area exhibit a strong bending feature across the pipe wall thickness, while the hoop residual stresses showed a much less variation through the wall thickness. (b) Some periodic variation of the residual stresses is present along the pipe circumference near the weld, particularly for the axial residual stress component. Such a variation tends to become more pronounced in thick wall than in thin wall girth welds. A 3-D model is essential to adequately capture such 3-D features in residual stress distributions. (c) A rapid variation in weld residual stresses can be seen at start/stop positions, where a high magnitude of axial residual stresses is present in both tension and compression.


Author(s):  
Frederick W. Brust ◽  
E. Punch ◽  
D. J. Shim ◽  
David Rudland ◽  
Howard Rathbun

Flaw indications have been found in some dissimilar metal (DM) nozzle to stainless steel piping welds and reactor pressure vessel heads (RPVH) in pressurized water reactors (PWR) throughout the world. The nozzle welds usually involve welding ferritic (often A508) nozzles to 304/316 stainless steel pipe) using Alloy 182/82 weld metal. The welds may become susceptible to a form of corrosion cracking referred to as primary water stress corrosion cracking (PWSCC). It can occur if the temperature is high enough (usually greater than 300°C) and the water chemistry in the PWR is typical of operating plants. The weld residual stresses (WRS) induced by the welds are a main driver of PWSCC. The purpose of this paper is to determine the weld residual stresses in a double-vee groove welded nozzle and then to model the natural crack growth in the weld. The double vee groove geometry has not been modeled much to date especially in such a large nozzle. This leads to a rather unique weld residual stress pattern which changes as the throat of the double vee is approached. Axial crack growth is modeled using a natural crack growth procedure. This was challenging since the crack shape necked down in the region where the tips of the vee grooves meet making the mesh development during this process challenging. This analysis provides information regarding crack growth evolution versus time. In addition, some comments regarding idealized growth are presented.


Sign in / Sign up

Export Citation Format

Share Document