Welding Simulation: Relationship Between Welding Geometry and Determination of Hardening Model

Author(s):  
Jonathan Mullins ◽  
Jens Gunnars

It is generally acknowledged that the material hardening model exerts a considerable effect on predicted weld residual stress fields. For this reason the choice of hardening model has attracted interest among analysts, particularly during recent validation studies. Nevertheless there is still lack of evidence for a hardening model which is generally applicable for all welding geometries. In this work we examine the predictions of nonlinear kinematic, isotropic and mixed hardening models for two different geometries: a single bead on plate weld, and a multi-bead girth weld. Hardening parameters are based on the same openly available mechanical test data. Deformation histories for the two welding geometries are presented. Predicted residual stress profiles are compared with experimental measurements. It is noted that nonlinear kinematic hardening results in good predictions for the single bead welding simulation where hardening in the weld and HAZ is dominated by a single heating and cooling cycle. Isotropic hardening results in good predictions for the 42 bead girth weld, where hardening in the weld and HAZ is heavily influenced by several heating and cooling cycles from the addition of several weld beads and where some relaxation of residual stress is possible. Mixed hardening can result in good predictions for both welding geometries. Additional strategies for development of material models based on isotropic and kinematic hardening and relevant test data are discussed with particular attention paid to intermediate weld geometries.

2013 ◽  
Vol 772 ◽  
pp. 65-71 ◽  
Author(s):  
Ondrej Muránsky ◽  
Cory J. Hamelin ◽  
Mike C. Smith ◽  
Phillip J. Bendeich ◽  
Lyndon Edwards

Constitutive plasticity theory is commonly applied to the numerical analysis of welds in one of three ways: using an isotropic hardening model, a kinematic hardening model, or a mixed isotropic-kinematic hardening model. The choice of model is not entirely dependent on its numerical accuracy, however, as a lack of empirical data will often necessitate the use of a specific approach. The present paper seeks to identify the accuracy of each formalism through direct comparison of the predicted and actual post-weld residual stress field developed in a three-pass 316LN stainless steel slot weldment. From these comparisons, it is clear that while the isotropic hardening model tends to noticeably over-predict and the kinematic hardening model slightly under-predict the residual post-weld stress field, the results using a mixed hardening model are quantitatively accurate. Even though the kinematic hardening model generally provides more accurate results when compared to an isotropic hardening formalism, the latter might be a more appealing choice to engineers requiring a conservative design regarding weld residual stress.


Author(s):  
Tao Zhang ◽  
F. W. Brust ◽  
Gery Wilkowski

Weld residual stresses in nuclear power plant can lead to cracking concerns caused by stress corrosion. These are large diameter thick wall pipe and nozzles. Many factors can lead to the development of the weld residual stresses and the distributions of the stress through the wall thickness can vary markedly. Hence, understanding the residual stress distribution is important to evaluate the reliability of pipe and nozzle joints with welds. This paper represents an examination of the weld residual stress distributions which occur in various different size nozzles. The detailed weld residual stress predictions for these nozzles are summarized. Many such weld residual stress solutions have been developed by the authors in the last five years. These distributions will be categorized and organized in this paper and general trends for the causes of the distributions will be established. The residual stress field can therefore feed into a crack growth analysis. The solutions are made using several different constitutive models such as kinematic hardening, isotropic hardening, and mixed hardening model. Necessary fabrication procedures such as repair, overlay and post weld heat treatment are also considered. Some general discussions and comments will conclude the paper.


2012 ◽  
Vol 249-250 ◽  
pp. 927-930
Author(s):  
Ze Yu Wu ◽  
Xin Li Bai ◽  
Bing Ma

In finite element calculation of plastic mechanics, isotropic hardening model, kinematic hardening model and mixed hardening model have their advantages and disadvantages as well as applicability area. In this paper, by use of the tensor analysis method and mixed hardening theory in plastic mechanics, the constitutive relation of 3-D mixed hardening problem is derived in detail based on the plane mixed hardening. Numerical results show that, the proposed 3-D mixed hardening constitutive relation agrees well with the test results in existing references, and can be used in the 3-D elastic-plastic finite element analysis.


2010 ◽  
Vol 638-642 ◽  
pp. 3710-3715
Author(s):  
T. Schenk ◽  
I.M. Richardson ◽  
G. Eßer ◽  
M. Kraska

The accurate prediction of welding distortion is an important requirement for the industry in order to allow the definition of robust process parameters without the need to perform expensive experiments. Many models have been developed in the past decades in order to improve prediction. Assumptions are made to make the models tractable; however, the consequences are rarely discussed. One example for such an assumption is the strain hardening model, which is often a choice between either kinematic or isotropic hardening. This paper presents the results of tensile tests for DP600 performed from room temperature up to one thousand degrees and for different strain-rates. In order to employ a mixed isotropic-kinematic hardening model, the fractions of each hardening contribution have been determined by means of bend testing. The welding distortion of a DP600 overlap joint has been simulated and it is shown that such a mixed-hardening model results in more accurate and reliable results.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Tao Zhang ◽  
Frederick W. Brust ◽  
Gery Wilkowski

Weld residual stresses in nuclear power plants can lead to cracking concerns caused by stress corrosion. Many factors can lead to the development of the weld residual stresses, and the distributions of the stress through the wall thickness can vary markedly depending on the weld processing parameters, nozzle and pipe geometries, among other factors. Hence, understanding the residual stress distribution is important in order to evaluate the reliability of pipe and nozzle welded joints. This paper represents an examination of the weld residual stress distributions which occur in different nozzles. The geometries considered here are large diameter thick wall pipe and nozzles. The detailed weld residual stress predictions for these nozzles are summarized. These results are categorized and organized in this paper and general trends for the causes of the distributions are established. The solutions are obtained using several different constitutive models including kinematic hardening, isotropic hardening, and mixed hardening model. Necessary fabrication procedures such as weld repair, overlay, and postweld heat treatment are also considered. The residual stress field can therefore be used to perform a crack growth and instability analysis. Some general discussions and comments are given in the paper.


Author(s):  
Dimosthenis Floros ◽  
Andreas Jobst ◽  
Andreas Kergaßner ◽  
Marion Merklein ◽  
Paul Steinmann

AbstractAn holistic view is attempted towards prediction of the effect of residual stresses induced by full-forward extrusion on fatigue life of workpieces during operation. To study the effect of constitutive model on the accuracy of forming simulations, a combined nonlinear isotropic/kinematic hardening model as well as the isotropic hardening part of the same model are calibrated based on five compression-tension-compression uniaxial stress experiments. A full-forward extrusion finite element model is developed adapting both the aforementioned hardening plasticity models and the predicted residual stress states at the surface of the workpiece are compared against that of a corresponding forming experiment. Results show residual stress predictions of remarkable accuracy by the FE-models with the isotropic hardening model. The effect of residual stresses on fatigue life of the workpiece is qualitatively studied by uncoupled multiscale simulations featuring gradient crystal plasticity at the microscale. While the effective (homogenized) macroscale response indicates elastic response during a macroscopically cyclic loading, plasticity accompanying reduction of residual stresses is still present at the microscale within, e.g. grain boundaries.


2016 ◽  
Vol 33 (5) ◽  
pp. 1435-1450 ◽  
Author(s):  
Chuan Liu ◽  
Ying Luo ◽  
Min Yang ◽  
Qiang Fu

Purpose – The purpose of this paper is to clarify the effect of material hardening model and lump-pass method on the thermal-elastic-plastic (TEP) finite element (FE) simulation of residual stress induced by multi-pass welding of materials with cyclic plasticity. Design/methodology/approach – Nickel-base alloy and stainless steel, which are used in J-type weld for manufacturing the nuclear reactor pressure head, can easily harden during multi-pass welding. The J-weld welding experiment is carried out and the temperature cycle and residual stress are measured to validate the TEP simulation. Thermal-mechanical sequence coupling method is employed to get the welding residual stress. The lumped-pass model and pass-by-pass FE model are built and two materials hardening models, kinematic hardening model and mixed hardening model, are adopted during the simulations. The effects of material hardening models and lumped-pass method on the residual stress in J-weld are distinguished. Findings – Based on the kinematic hardening model, the stresses simulated with the lumped-pass FE model are almost consistent with those obtained by the pass-by-pass FE model; while with the mixed hardening material model, the lumped-pass method has great effect on the simulated stress. Practical implications – A computation with mixed isotropic-kinematic material seems not to be the appropriate solution when using the lumped-pass method to save the computation time. Originality/value – In the simulation of multi-pass welding residual stress involved in materials with cyclic plasticity, the material hardening model should be carefully considered. The kinematic hardening model with lump-pass FE model can be used to get better simulation results with less computation time. The results give a direction for welding residual stress simulation for the large structure such as the reactor pressure vessel.


Author(s):  
R. J. Dennis ◽  
N. A. Leggatt ◽  
A. Gregg

Finite element studies have been carried out simulating 3-dimensional deposition of weld metal on a flat plate. The purpose of this work is to further understand and develop the modelling requirements in order to accurately predict post weld residual stresses when compared to residual stress measurements. A single bead on plate specimen has been chosen as it has similar characteristics to those occurring in a repair weld which is of engineering interest. This analysis makes use of detailed fabrication records such as thermocouples, recorded heat inputs and etched macrographs which detail the fusion boundary profile. Analysis of the macrographs indicate a reduced weld penetration towards the end of the weld bead and especially along the centre-line of the bead where a “double-lobed” appearance was noted when viewed on a plane perpendicular to the bead. At the start position, a deeper fusion boundary was observed relative to the majority of the weld bead. The aim of this piece of work was to match the observed and predicted fusion boundaries and to analyse the influence on the predicted residual stresses when compared to a constant fusion boundary, along the length of the bead, as modelled in earlier analysis of the bead-on-plate. Two mechanical simulations were conducted based upon the matched fusion boundary thermal solution. These mechanical simulations utilised two hardening models, both of which are based on a non-linear kinematic hardening model but derived from different test data. A baseline kinematic hardening model has been used that is derived from monotonic and single pass weld bead specimens. A mixed hardening model has also been used which has been derived from both monotonic and cyclic test data. Furthermore this analysis takes advantage of some new features to weld modelling. In particular these include the Dynamic Fusion Boundary (DFB) approach where material properties are assigned to elements according to their temperature history.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 337 ◽  
Author(s):  
Elham Mirkoohi ◽  
Hong-Chuong Tran ◽  
Yu-Lung Lo ◽  
You-Cheng Chang ◽  
Hung-Yu Lin ◽  
...  

Rapid and accurate prediction of residual stress in metal additive manufacturing processes is of great importance to guarantee the quality of the fabricated part to be used in a mission-critical application in the aerospace, automotive, and medical industries. Experimentations and numerical modeling of residual stress however are valuable but expensive and time-consuming. Thus, a fully coupled thermomechanical analytical model is proposed to predict residual stress of the additively manufactured parts rapidly and accurately. A moving point heat source approach is used to predict the temperature field by considering the effects of scan strategies, heat loss at part’s boundaries, and energy needed for solid-state phase transformation. Due to the high-temperature gradient in this process, the part experiences a high amount of thermal stress which may exceed the yield strength of the material. The thermal stress is obtained using Green’s function of stresses due to the point body load. The Johnson–Cook flow stress model is used to predict the yield surface of the part under repeated heating and cooling. As a result of the cyclic heating and cooling and the fact that the material is yielded, the residual stress build-up is precited using incremental plasticity and kinematic hardening behavior of the metal according to the property of volume invariance in plastic deformation in coupling with the equilibrium and compatibility conditions. Experimental measurement of residual stress was conducted using X-ray diffraction on the fabricated IN718 built via laser powder bed fusion to validate the proposed model.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 511 ◽  
Author(s):  
Baara ◽  
Baharudin ◽  
Anuar ◽  
Ismail

Commercial finite element software that uses default hardening model simulation is not able to predict the final shape of sheet metal that changes its dimensions after removing the punch due to residual stress (strain recovery or springback). We aimed to develop a constitutive hardening model to more accurately simulate this final shape. The strain recovery or balancing of residual stress can be determined using the isotropic hardening of the original elastic modulus and the hardening combined with varying degrees of elastic modulus degradation and the size of the yield surfaces. The Chord model was modified with one-yield surfaces. The model was combined with nonlinear isotropic–kinematic hardening models and implemented in Abaqus user-defined material subroutine for constitutive model (UMAT). The Numisheet 2011 benchmark for springback prediction for DP780 high-strength steel sheet was selected to verify the new model, the Chord model, the Quasi Plastic-Elastic (QPE) model, and the default hardening model using Abaqus software. The simulation of U-draw bending from the Numisheet 2011 benchmark was useful for comparing the proposed model with experimental measurements. The results from the simulation of the model showed that the new model more accurately predicts springback than the other models.


Sign in / Sign up

Export Citation Format

Share Document