Gaskets and Bolted Joints

1950 ◽  
Vol 17 (2) ◽  
pp. 169-179
Author(s):  
Irving Roberts

Abstract This paper consists of a study of the loading requirements of gaskets in bolted joints, with the object of developing a rational basis for design of such joints. Starting with an analysis of gasket conditions for tightness, the gasket factor m is defined, and its variation with initial gasket stress and gasket width is predicted. These trends are confirmed by a survey of the available literature data. In a bolted joint, gasket stress becomes a function of the elastic constants of the system. Equations are derived to predict gasket and bolt stresses resulting from application of internal fluid pressure, and typical elastic recovery curves for an asbestos gasket are presented. Consideration is given to the effect of gasket creep in a bolted joint, and to the problem of distribution of bolt load, for which an approximate theory is derived. On this basis, defects in the ASME Code are pointed out, and a tentative new design procedure is proposed. Finally, a summary of data which should be obtained for use with the new design procedure is given.

2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Guillermo Ramirez ◽  
Paul H. Ziehl ◽  
Timothy J. Fowler

A research program evaluating the effect of elevated temperature in the acoustic emission testing of fiberglass vessels was completed recently. The program aimed at evaluating the current ASME provisions that require acoustic emission testing for Class II vessels be carried out at operating temperature in the event that the operating temperature exceeds 49°C (120°F). Lack of data from fiber reinforced polymer vessels and/or components that have been subjected to acoustic emission evaluation at elevated temperature has resulted in speculation regarding the appropriateness of conducting the acoustic emission evaluation at elevated temperature. To address these issues, an experimental investigation was conducted on representative coupon specimens and pressurized cylindrical specimens at differing temperatures. The results from the coupon tests were presented in a previous publication. This paper will present the results of the cylindrical specimens and compare them to the coupon specimens drawing the final conclusions from the overall results of the program. The results from this study resulted in changes in the body of the ASME code for testing pressure vessels with acoustic emission at temperature.


1993 ◽  
Vol 17 (2) ◽  
pp. 181-196 ◽  
Author(s):  
A. Bouzid ◽  
A. Chaaban

Structurally sound bolted joints often fail due to loss of tightness. This is because the clamping load is affected by the application of the internal fluid pressure. A good design technique should therefore encompass most aspects of joint behaviour and produce efficient sealing performance within the clearly defined limits of the method used. This paper presents a simple analytical model based on an extension of the Taylor Forge approach taking into account flange rotation, flexibility of both the gasket and the bolts and, when applicable, the stiffness of the end closure. Examples will be discussed based on experimentally determined gasket properties.


1997 ◽  
Vol 119 (1) ◽  
pp. 10-17 ◽  
Author(s):  
A. Bouzid ◽  
A. Chaaban

Bolted flanged joint assemblies may begin to leak some time following a successful hydrostatic test. One of the reasons is that the gasket experiences a drop in its initial compressive stress due to creep, thermal dilatation, and thermal degradation. The need to pay attention to the relaxation behavior of bolted joints for high-temperature applications is recognized by the ASME Code, but no specific guidelines are given to help engineers, neither at the design nor maintenance levels. This paper deals with the basic analytical tools that have been used to develop a computer program “SuperFlange” that can be used to make accurate predictions of the relaxation of bolted flanged joints, and hence be able to provide a reasonable leakage assessment over time. A simplified analytical method of relaxation analysis will also be presented. These proposed methods are supported by test results obtained on a real bolted joint fixture and by FE modeling. A strong emphasis will be put on flanged joint rigidity, which is one of the major controlling parameters of relaxation besides the material properties involved.


1982 ◽  
Vol 104 (4) ◽  
pp. 268-271
Author(s):  
A. G. Ware

A structural load, which is often overlooked when ASME Code analyses of piping and nozzles are conducted, is the moment induced by axial elongation of a pipe segment due to internal fluid pressure and momentum. An example illustrates that this effect can sometimes produce stresses which are too large to be ignored.


2020 ◽  
Vol 14 (3) ◽  
pp. 7141-7151 ◽  
Author(s):  
R. Omar ◽  
M. N. Abdul Rani ◽  
M. A. Yunus

Efficient and accurate finite element (FE) modelling of bolted joints is essential for increasing confidence in the investigation of structural vibrations. However, modelling of bolted joints for the investigation is often found to be very challenging. This paper proposes an appropriate FE representation of bolted joints for the prediction of the dynamic behaviour of a bolted joint structure. Two different FE models of the bolted joint structure with two different FE element connectors, which are CBEAM and CBUSH, representing the bolted joints are developed. Modal updating is used to correlate the two FE models with the experimental model. The dynamic behaviour of the two FE models is compared with experimental modal analysis to evaluate and determine the most appropriate FE model of the bolted joint structure. The comparison reveals that the CBUSH element connectors based FE model has a greater capability in representing the bolted joints with 86 percent accuracy and greater efficiency in updating the model parameters. The proposed modelling technique will be useful in the modelling of a complex structure with a large number of bolted joints.


2020 ◽  
Vol 66 (1) ◽  
Author(s):  
Keita Ogawa ◽  
Satoshi Fukuta ◽  
Kenji Kobayashi

Abstract The development of wooden joints possessing high resistance performance has become an important issue for the construction of newer buildings. This study attempts to strengthen the lateral resistance of bolted joints using the previously reported plasticizing technique. This technique consists of two processing stages: incising the surface of the wood using an ultraviolet wavelength short-pulse laser and impregnating the resin into the incised area. This technique makes it possible to plasticize only a local part of the wood surface. Bolted joint specimens were assembled using plasticized wood around the bolt hole, and the lateral tests were conducted. Acrylic monomer and urethane prepolymer were used as the impregnating resins and their incision depths were set as 4 and 10 mm. When the lateral load acted parallel to the grain, changes in the lateral resistance characteristics were observed, especially for the stiffness and yield load. For example, when acryl was used, and the incision depth was 10 mm, an increment of 73% in the yield load was observed, as compared to the non-impregnated specimens. The specimen groups impregnated with acryl exhibited greater changes in their properties than those using urethane. When loaded perpendicular to the grain, an increase in properties were observed; however, these increments were lower than those of the groups loaded parallel to the grain.


Author(s):  
Masahiro Watanabe ◽  
Eiji Tachibana ◽  
Nobuyuki Kobayashi

This paper deals with the theoretical stability analysis of in-plane parametric vibrations of a curved bellows subjected to periodic internal fluid pressure excitation. The curved bellows studied in this paper are fixed at both ends rigidly, and are excited by the periodic internal fluid pressure. In the theoretical stability analysis, the governing equation of the curved bellows subjected to periodic internal fluid pressure excitation is derived as a Mathieu’s equation by using finite element method (FEM). Natural frequencies of the curved bellows are examined and stability maps are presented for in-plane parametric instability. It is found that the natural frequencies of the curved bellows decrease with increasing the static internal fluid pressure and buckling occurs due to high internal fluid pressure. It is also found that two types of parametric vibrations, longitudinal and transverse vibrations, occur to the curved bellows in-plane direction due to the periodic internal fluid pressure excitation. Moreover, effects of axis curvature on the parametric instability regions are examined theoretically.


2021 ◽  
Vol 10 (4) ◽  
pp. 1-27
Author(s):  
Shengxin Jia ◽  
Veronica J. Santos

The sense of touch is essential for locating buried objects when vision-based approaches are limited. We present an approach for tactile perception when sensorized robot fingertips are used to directly interact with granular media particles in teleoperated systems. We evaluate the effects of linear and nonlinear classifier model architectures and three tactile sensor modalities (vibration, internal fluid pressure, fingerpad deformation) on the accuracy of estimates of fingertip contact state. We propose an architecture called the Sparse-Fusion Recurrent Neural Network (SF-RNN) in which sparse features are autonomously extracted prior to fusing multimodal tactile data in a fully connected RNN input layer. The multimodal SF-RNN model achieved 98.7% test accuracy and was robust to modest variations in granular media type and particle size, fingertip orientation, fingertip speed, and object location. Fingerpad deformation was the most informative modality for haptic exploration within granular media while vibration and internal fluid pressure provided additional information with appropriate signal processing. We introduce a real-time visualization of tactile percepts for remote exploration by constructing a belief map that combines probabilistic contact state estimates and fingertip location. The belief map visualizes the probability of an object being buried in the search region and could be used for planning.


2021 ◽  
Author(s):  
Rashique Iftekhar Rousseau ◽  
Abdel-Hakim Bouzid ◽  
Zijian Zhao

Abstract The axial stiffnesses of the bolt and clamped members of bolted joints are of great importance when considering their integrity and capacity to withstand external loads and resist relaxation due to creep. There are many techniques to calculate the stiffnesses of the joint elements using finite element (FE) modeling, but most of them are based on the displacement of nodes that are selected arbitrarily; therefore, leading to inaccurate values of joint stiffness. This work suggests a new method to estimate the stiffnesses of the bolt and clamped members using FE analysis and compares the results with the FE methods developed earlier and also with the existing analytical models. A new methodology including an axisymmetric finite element model of the bolted joint is proposed in which the bolts of different sizes ranging from M6 to M36 are considered for the analysis to generalize the proposed approach. The equivalent bolt length that includes the contribution of the thickness of the bolt head and the bolt nominal diameter to the bolt stiffness is carefully investigated. An equivalent bolt length that accounts for the flexibility of the bolt head is proposed in the calculation of the bolt stiffness and a new technique to accurately determine the stiffness of clamped members are detailed.


2021 ◽  
Author(s):  
Qingyuan Lin ◽  
Yong Zhao ◽  
Qingchao Sun ◽  
Kunyong Chen

Abstract Bolted connection is one of the most widely used mechanical connections because of its easiness of installation and disassembly. Research of bolted joints mainly focuses on two aspects: high precision tightening and improvement of anti-loosening performance. The under-head bearing friction coefficient and the thread friction coefficient are the two most important parameters that affect the tightening result of the bolted joint. They are also the most critical parameters that affect the anti-loosening performance of the bolted joint. Coulomb friction model is a commonly used model to describe under-head bearing friction and thread friction, which considers the friction coefficient as a constant independent of normal pressure and relative sliding velocity. In this paper, the viscous effect of the under-head bearing friction and thread friction is observed by measuring the friction coefficient of bolted joints. The value of the friction coefficient increases with the increase of the relative sliding velocity and the decrease of the normal pressure. It is found that the Coulomb viscous friction model can better describe the friction coefficient of bolted joints. Taking into account the dense friction effect, the loosening prediction model of bolted joints is modified. The experimental results show that the Coulomb viscous friction model can better describe the under-head bearing friction coefficient and thread friction coefficient. The model considering the dense effect can more accurately predict the loosening characteristics of bolted joints.


Sign in / Sign up

Export Citation Format

Share Document