Analysis of the Airfoil Stall With a Modification of Viscous-Inviscid Interaction Concept

2013 ◽  
Vol 135 (5) ◽  
Author(s):  
E. L. Amromin

A modification of the viscous-inviscid interaction concept with the employment of coupled vortices around the airfoil wake is introduced for analyzing the airfoil stall. The analyzed flow includes the laminar boundary layers, laminar separation bubble, laminar-turbulent transition zone, turbulent boundary layers, turbulent separation zone, wake, and outer inviscid flow. Integral methods are employed for the boundary layers. The boundaries of separation zones are analyzed as free surfaces, however, their lengths and shapes depend on the Reynolds number. The described modification is validated by a comparison of the numerical results with the previously published experimental data for various airfoils and Reynolds numbers at low Mach numbers. This modification achieves a reasonably good agreement of the computed lift and moment coefficients with their measured values.

1979 ◽  
Vol 92 (4) ◽  
pp. 643-657 ◽  
Author(s):  
Taeyoung Han ◽  
V. C. Patel

Surface streamline patterns on a spheroid have been examined at several angles of attack. Most of the tests were performed at low Reynolds numbers in a hydraulic flume using coloured dye to make the surface flow visible. A limited number of experiments was also carried out in a wind tunnel, using wool tufts, to study the influence of Reynolds number and turbulent separation. The study has verified some of the important qualitative features of three-dimensional separation criteria proposed earlier by Maskell, Wang and others. The observed locations of laminar separation lines on a spheroid at various incidences have been compared with the numerical solutions of Wang and show qualitative agreement. The quantitative differences are attributed largely to the significant viscous-inviscid flow interaction which is present, especially at large incidences.


2020 ◽  
Vol 21 (6) ◽  
pp. 620
Author(s):  
Allison Poels ◽  
Xavier Collin ◽  
Azemi Benaissa ◽  
Dominique Poirel

This work examines the flow structure modes in the boundary layer and in the wake of a NACA0012 airfoil in static conditions at transitional chord-based Reynolds numbers (Rec), for small angles of attack (α). A laminar mode, with a laminar separation of the boundary layer and laminar Kármán streets in the wake, was first observed for Rec < 61400 and α = 0°. For 77 000 < Rec < 118600, which corresponds to a regime between laminar and transitional mode called subcritical mode, the boundary layer exhibited a long separation bubble reattached close to the trailing edge, and the wake showed a turbulent Kármán street. Finally, for higher Rec and α, a critical transition mode consisted of a long bubble followed by a turbulent separation, and a less structured vortex street in the wake of the airfoil.


1991 ◽  
Vol 113 (4) ◽  
pp. 608-616 ◽  
Author(s):  
H. M. Jang ◽  
J. A. Ekaterinaris ◽  
M. F. Platzer ◽  
T. Cebeci

Two methods are described for calculating pressure distributions and boundary layers on blades subjected to low Reynolds numbers and ramp-type motion. The first is based on an interactive scheme in which the inviscid flow is computed by a panel method and the boundary layer flow by an inverse method that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow equations. The second method is based on the solution of the compressible Navier–Stokes equations with an embedded grid technique that permits accurate calculation of boundary layer flows. Studies for the Eppler-387 and NACA-0012 airfoils indicate that both methods can be used to calculate the behavior of unsteady blade boundary layers at low Reynolds numbers provided that the location of transition is computed with the en method and the transitional region is modeled properly.


Author(s):  
A. D’Ovidio ◽  
J. A. Harkins ◽  
J. P. Gostelow

The study of turbulent spots in strong adverse pressure gradients is of current interest in turbomachinery research. The aim of this investigation is to use information gathered from boundary layer transition and laminar separation, in wind tunnel tests on flat plates, to predict the equivalent phenomena occurring on turbomachinery blade surfaces. In Part 1 turbulent spot behavior was documented for two Reynolds numbers, corresponding to a laminar separation bubble (LSB) and an incipient separation condition (IS). In Part 2 further results are reported characterizing typical spot propagation and spreading rates and serving to validate or modify existing correlations for predicting transition length.


Author(s):  
Jenny Baumann ◽  
Ulrich Rist ◽  
Martin Rose ◽  
Tobias Ries ◽  
Stephan Staudacher

The reduction of blade counts in the LP turbine is one possibility to cut down weight and therewith costs. At low Reynolds numbers the suction side laminar boundary layer of high lift LP turbine blades tends to separate and hence cause losses in turbine performance. To limit these losses, the control of laminar separation bubbles has been the subject of many studies in recent years. A project is underway at the University of Stuttgart that aims to suppress laminar separation at low Reynolds numbers (60,000) by means of actuated transition. In an experiment a separating flow is influenced by disturbances, small in amplitude and of a certain frequency, which are introduced upstream of the separation point. Small existing disturbances are therewith amplified, leading to earlier transition and a more stable boundary layer. The separation bubble thus gets smaller without need of a high air mass flow as for steady blowing or pulsed vortex generating jets. Frequency and amplitude are the parameters of actuation. The non-dimensional actuation frequency is varied from 0.2 to 0.5, whereas the normalized amplitude is altered between 5, 10 and 25% of the free stream velocity. Experimental investigations are made by means of PIV and hot wire measurements. Disturbed flow fields will be compared to an undisturbed one. The effectiveness of the presented boundary layer control will be compared to those of conventional ones. Phase-logged data will give an impression of the physical processes in the actuated flow.


Author(s):  
Dongli Ma ◽  
Guanxiong Li ◽  
Muqing Yang ◽  
Shaoqi Wang

Laminar separation and transition have significant effects on aerodynamic characteristics of the wing under the condition of low Reynolds numbers. Using the flow control methods to delay and eliminate laminar separation has great significance. This study uses the method combined with water tunnel test and numerical calculation to research the effects of suction flow control on the flow state and aerodynamic force of the wing at low Reynolds numbers. The effects of suction flow rate and suction location on laminar separation, transition and aerodynamic performance of the wing are further researched. The results of the research show that, the suction can control laminar separation and transition effectively, when the suction holes are in the interior of the separation bubble, and close to the separation point, the suction has the best control effect. When the Reynolds number is Re = 3.0 × 105, the suction flow control can make the lift-to-drag ratio of the wing increase by 8.62%, and the aerodynamic characteristics of the wing are improved effectively.


Author(s):  
M. I. Yaras

In this paper, measurements are presented on the effects of freestream turbulence on laminar-to-turbulent transition in separation bubbles, and correlations are proposed for the locations of transition and reattachment on the basis of this data. The boundary layer development is measured on a smooth, flat plate upon which streamwise pressure gradients are imposed by a flexible, contoured wall opposite to the test plate. Two variations in the streamwise pressure distribution are investigated, and two Reynolds numbers are considered for each pressure-gradient setting. For each combination of pressure distribution and Reynolds number, the freestream turbulence intensity and length scale are adjusted systematically by varying the open-area-ratio and cell size of the grid installed at the test-section inlet. Measured quantities consist of velocity obtained with a single-hot wire probe and surface pressures measured through pressure taps.


Sign in / Sign up

Export Citation Format

Share Document