Derivation of Optimum Profile Modifications in Narrow-Faced Spur and Helical Gears Using a Perturbation Method

2013 ◽  
Vol 135 (7) ◽  
Author(s):  
J. Bruyère ◽  
P. Velex

A perturbation method is presented which makes it possible to obtain approximate closed-form expressions for profile relief that minimize the fluctuations of quasi-static transmission errors under load. A number of results are displayed which prove the theoretical effectiveness of the proposed solutions for low-contact ratio (LCR) and high-contact ratio (HCR) spur and helical gears. It is also shown that the corresponding relief performance is not significantly downgraded by center-distance (CD) variations. Finally, a number of practical considerations are brought up and commented.

2011 ◽  
Vol 86 ◽  
pp. 26-29
Author(s):  
Kai Feng ◽  
Shigeki Matsumura ◽  
Haruo Houjoh

This study presents a numerical model of helical gears to consider the effects of shaft and bearing flexibility. A primary feature of this study is that the time-varying mesh stiffness is not just determined by the geometry of gear pair but also updated for each iteration according to the change of center distance. The effects of shaft and bearing flexibilities are discussed by comparing the dynamic response of gear pairs supported with a rigid and a flexible bearing-shaft system. The results show that the pressure angle and contact ratio are significantly changed due to the center-distance variation of gears and the gear pair with a flexible bearing-shaft system has much larger vibration. Finally, experimental tests are conducted to validate the proposed model. The predicted results show good agreement with the experimental data.


Author(s):  
Ignacio Gonzalez-Perez ◽  
Alfonso Fuentes ◽  
Faydor L. Litvin ◽  
Kenichi Hayasaka ◽  
Kenji Yukishima

Involute helical gears with modified geometry for transformation of rotation between parallel axes are considered. Three types of topology of geometry are considered: (1) crowning of pinion tooth surface is provided only partially by application of a grinding disk; (2) double crowning of pinion tooth surface is obtained applying a grinding disk; (3) concave-convex pinion and gear tooth surfaces are provided (similar to Novikov-Wildhaber gears). Localization of bearing contact is provided for all three types of topology. Computerized TCA (Tooth Contact Analysis) is performed for all three types of topology to obtain: (i) path of contact on pinion and gear tooth surfaces; (ii) negative function of transmission errors for misaligned gear drives (that allows the contact ratio to be increased). Stress analysis is performed for the whole cycle of meshing. Finite element models of pinion and gear with several pairs of teeth are applied. A relative motion is imposed to the pinion model that allows friction between contact surfaces to be considered. Numerical examples have confirmed the advantages and disadvantages of the applied approaches for generation and design.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
P. Velex ◽  
J. Bruyère ◽  
D. R. Houser

Some theoretical developments are presented, which lead to approximate analytical results on quasi-static transmission errors valid for low and high contact ratio spur and helical gears. Based on a multidegree-of-freedom gear model, a unique scalar equation for transmission error is established. The role of profile relief is analyzed by using Fourier series and it is shown that transmission error fluctuations depend on a very limited number of parameters representative of gear geometry and profile relief definition. An original direct solution to the optimum relief minimizing transmission error fluctuations is presented, which is believed to be helpful for designers. The analytical results compare well with the numerical results provided by a variety of models and it is demonstrated that some general laws of evolution for transmission error fluctuations versus profile modifications can be established for spur and helical gears.


1986 ◽  
Vol 108 (1) ◽  
pp. 86-94 ◽  
Author(s):  
M. S. Tavakoli ◽  
D. R. Houser

A procedure for computing static transmission errors and tooth load sharing was developed for low and high contact ratio internal and external spur gears. A suitable optimization algorithm was used to minimize any combination of the harmonics of gear mesh frequency components of the static transmission error. Different combinations of tip and root relief may be used to achieve optimization. These include varying the starting point of relief and varying the magnitude of relief, and selecting the gear and/or the pinion teeth to be tip and/or root-relieved. Also, there exists an option for using either linear or parabolic relief. In addition to the presentation of optimal profile modifications, the effects of off-design loads, nonoptimum modifications, and random spacing errors are presented.


1996 ◽  
Vol 118 (3) ◽  
pp. 439-443 ◽  
Author(s):  
Chuen-Huei Liou ◽  
Hsiang Hsi Lin ◽  
F. B. Oswald ◽  
D. P. Townsend

This paper presents a computer simulation showing how the gear contact ratio affects the dynamic load on a spur gear transmission. The contact ratio can be affected by the tooth addendum, the pressure angle, the tooth size (diametral pitch), and the center distance. The analysis presented in this paper was performed by using the NASA gear dynamics code DANST. In the analysis, the contact ratio was varied over the range 1.20 to 2.40 by changing the length of the tooth addendum. In order to simplify the analysis, other parameters related to contact ratio were held constant. The contact ratio was found to have a significant influence on gear dynamics. Over a wide range of operating speeds, a contact ratio close to 2.0 minimized dynamic load. For low-contact-ratio gears (contact ratio less than two), increasing the contact ratio reduced gear dynamic load. For high-contact-ratio gears (contact ratio equal to or greater than 2.0), the selection of contact ratio should take into consideration the intended operating speeds. In general, high-contact-ratio gears minimized dynamic load better than low-contact-ratio gears.


1993 ◽  
Vol 115 (1) ◽  
pp. 171-178 ◽  
Author(s):  
Hsiang Hsi Lin ◽  
Chinwai Lee ◽  
F. B. Oswald ◽  
D. P. Townsend

This paper presents a numerical procedure for minimizing dynamic effects on high-contact-ratio gears by modification of the tooth profile. The paper examines and compares both linear and parabolic tooth profile modifications of high-contact-ratio gears under various loading conditions. The effects of the total amount of modification and the length of the modification zone were systematically studied at various loads and speeds to find the optimum profile design for minimizing the dynamic load and the tooth bending stress. Parabolic profile modification is preferred over linear profile modification for high-contact-ratio gears because of its lower sensitivity to manufacturing errors. For parabolic modification a greater amount of modification at the tooth tip and a longer modification zone are required. Design charts are presented for high-contact-ratio gears with various profile modifications operating under a range of loads. A procedure is illustrated for using the charts to find the optimum profile design.


1995 ◽  
Vol 117 (2A) ◽  
pp. 254-261 ◽  
Author(s):  
F. L. Litvin ◽  
N. X. Chen ◽  
J. Lu ◽  
R. F. Handschuh

An approach for the design and generation of low-noise helical gears with localized bearing contact is proposed. The approach is applied to double circular arc helical gears and modified involute helical gears. The reduction of noise and vibration is achieved by application of a predesigned parabolic function of transmission errors that is able to absorb a discontinuous linear function of transmission errors caused by misalignment. The localization of the bearing contact is achieved by the mismatch of pinion-gear tooth surfaces. Computerized simulation of meshing and contact of the designed gears demonstrated that the proposed approach will produce a pair of gears that has a parabolic transmission error function even when misalignment is present. Numerical examples for illustration of the developed approach are given.


2016 ◽  
pp. 423-430
Author(s):  
B. Guilbert ◽  
P. Velex ◽  
P. Cutuli

2017 ◽  
Vol 39 (2) ◽  
pp. 97-108
Author(s):  
Van-The Tran

In the conventional hobbing process, a double-crowned involute helical gear is generated by the hob cutter with parabolic-curve tooth profiles for the cross-profile crowning and varied the center distance between the hob and work gear for the longitudinal crowning. Therefore, to cut a double-crowned helical gear not only requires at least four synchronous axes and hob cutter regrinding (which increases production costs) but also induces twisted tooth flanks on the generated work gear. In this paper, I propose a hobbing method by applying a modified work gear rotation angle that enables double-crowning of involute helical gear's tooth flanks using a standard hob cutter and a computer numerical control (CNC) hobbing machine with only three synchronous axes. The proposed method has also verified by using two computer simulation examples to compare the meshing-conditions, contact ellipses, and transmission errors of the double-crowned gear pairs with that produced by applying the conventional hobbing method. Computer simulation results reveal the advantages of the proposed novel hobbing method.


1982 ◽  
Vol 104 (4) ◽  
pp. 749-757 ◽  
Author(s):  
M. Savage ◽  
J. J. Coy ◽  
D. P. Townsend

The design of a standard gear mesh is treated with the objective of minimizing the gear size for a given ratio, pinion torque, and allowable tooth strength. Scoring, pitting fatigue, bending fatigue, and the kinematic limits of contact ratio and interference are considered. A design space is defined in terms of the number of teeth on the pinion and the diametral pitch. This space is then combined with the objective function of minimum center distance to obtain an optimal design region. This region defines the number of pinion teeth for the most compact design. The number is a function of the gear ratio only. A design example illustrating this procedure is also given.


Sign in / Sign up

Export Citation Format

Share Document