CO2 Flooding to Increase Recovery for Unconventional Liquids-Rich Reservoirs

2013 ◽  
Vol 136 (2) ◽  
Author(s):  
B. Todd Hoffman ◽  
Shehbaz Shoaib

The rising energy demand is causing the petroleum industry to develop unconventional oil reservoirs; however, the primary recovery factor is low in these types of reservoirs. Alternative methods to increase recovery need to be studied. This paper analyzes the impact of CO2 flooding a sector of the Elm Coulee field using reservoir modeling. The sector is two miles by two miles and consists of six original single-lateral horizontal wells. Two different reservoir models are built for the sector: a primary recovery black oil model and a CO2 flood solvent model. They are used to determine the additional recovery due to a CO2 flood. Furthermore, the CO2 flood model is executed with different scenarios to determine the best well locations and injection schemes. The models demonstrate that CO2 flooding horizontal wells in the Elm Coulee field increases production. Comparison of vertical and horizontal injection techniques indicates continuous horizontal CO2 injection is more efficient; it yields higher injection rates, and it is also beneficial for long-term recovery. Focusing on horizontal injection, the best scenario involves the practice of drilling new injectors and producers along with converting existing producers to injection wells. In order to satisfy production requirements, production wells can be drilled such that there is an injector between two producers. This type of arrangement on horizontal injection increases the field recovery factor over 15% after eighteen years of injection.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mingqiang Hao ◽  
Songlin Liao ◽  
Guangming Yu ◽  
Xinhui Lei ◽  
Yong Tang

In this paper, the sensitivity factors of CO2 huff-n-puff for multifractured horizontal wells (MFHWs) in tight oil reservoirs were investigated through an experimental test and numerical simulation. The pressure-volume-temperature (PVT) experiment and the slim tube experiment are used to understand the interaction mechanism between CO2 and crude oil, and the minimum miscibility pressure (MMP) of the CO2-crude oil system is 17 MPa. The single-well model was firstly established to analyze the sensitivity factors on production performance of MFHWs by using CO2 huff-n-puff. The controlling factors of CO2 huff-n-puff for MFHWs in tight oil reservoirs were divided into three categories (i.e., reservoir parameters, well parameters, and injection-production parameters), and the impact of individual parameter on well performance was discussed in detail. The range of reservoir parameters suitable for CO2 huff-n-puff of MFHWs is obtained. The reservoir permeability is from 0.1 mD to 1 mD, the reservoir thickness changes from 10 m to 30 m, and the reservoir porosity is from 7% to 12%. Based on the reservoir parameters of the target reservoir, the reasonable well and fracture parameters are obtained. The sensitivity intensity was followed by the horizontal well length, fracture conductivity, fracture spacing, and fracture half-length. CO2 injection-production parameters are further optimized, and the sensitivity intensity was followed by the single-cycle cumulative CO2 injection rate, the soaking time, the injection rates, and the production rates. It provides a reference for parameter optimization of CO2 huff-n-puff for MFHWs in tight oil reservoirs.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Youwei He ◽  
Shiqing Cheng ◽  
Zhe Sun ◽  
Zhi Chai ◽  
Zhenhua Rui

Abstract Well production rates decline quickly in the tight reservoirs, and enhanced oil recovery (EOR) is needed to increase productivity. Conventional flooding from adjacent wells is inefficient in the tight formations, and Huff-n-Puff also fails to achieve the expected productivity. This paper investigates the feasibility of the inter-fracture injection and production (IFIP) method to increase oil production rates of horizontal wells. Three multi-fractured horizontal wells (MFHWs) are included in a cluster well. The fractures with even and odd indexes are assigned to be injection fractures (IFs) and recovery fractures (RFs). The injection/production schedule includes synchronous inter-fracture injection and production (s-IFIP) and asynchronous inter-fracture injection and production (a-IFIP). The production performances of three MFHWs are compared by using four different recovery approaches based on numerical simulation. Although the number of RFs is reduced by about 50% for s-IFIP and a-IFIP, they achieve much higher oil rates than depletion and CO2 Huff-n-Puff. The sensitivity analysis is performed to investigate the impact of parameters on IFIP. The spacing between IFs and RFs, CO2 injection rates, and connectivity of fracture networks affect oil production significantly, followed by the length of RFs, well spacing among MFHWs, and the length of IFs. The suggested well completion scheme for the IFIP methods is presented. This work discusses the ability of the IFIP method in enhancing the oil production of MFHWs.


2021 ◽  
Author(s):  
Bing Wei ◽  
Mengying Zhong ◽  
Haoran Tang ◽  
Lele Wang ◽  
Ke Gao ◽  
...  

Abstract The potential of CO2 injection in stimulating tight oil recovery after primary production has been extensively demonstrated previously. However, the processes of mass transport and exchange inside dual-permeability matrix-facture system driven by CO2 remain unclear. To improve our understanding and supplement the existing knowledge, three types of matrix-fracture models were designed and employed to mimic CO2 injection processes (huff-n-puff and flooding modes), named fully open fracture (FOF), partially open fracture (POF), and crossed open fracture (COF) models, respectively. CO2 huff-n-puff and flooding experiments were conducted on these three models to observe the dynamics of pressure and oil recovery factor. Core-scale models were built up by history-matching the oil recovery dynamics through modifying the relative permeability curves based on Corey correlations. The mass transport and exchange processes with the proceeding of CO2 injection were delineated. The results showed that either CO2 huff-n-puff or CO2 flooding was capable of extracting the oil from tight matrix substantially but the increase in oil recovery factor became insignificant with the increase in cycle number or injection time. The oil resided in the proximity of injector, fracture and producer were primarily recovered during CO2 flooding. In the FOF and COF models, the matrix oil near the injector and producer was mainly mobilized. As for CO2 huff-n-puff, the oil saturation of the three models was reduced uniformly throughout the cores with cycles. The high sweep efficiency of CO2 largely mobilized the oil near the injector. It can be generally concluded that injecting CO2 by huff-n-puff protocol might be more beneficial than flooding mode for unconventionals. The results of this paper can provide insights into the oil recovery dynamics and mass transport and exchange induced by CO2 injection in tight reservoirs.


2019 ◽  
Vol 2 (4) ◽  

The petroleum is a major source of energy of this era. With daily increase in energy demand, new methodologies are proposed to increase recovery factors in petroleum reservoirs. With increasing cumulative production and pressure drop, the wettability of reservoirs are changed to be oil-wet. Accordingly, one way to increase recovery factor from the reservoirs is to change the wettability of the reservoir rock from oil-wet to water-wet using nanoparticles. In this paper the change in relative permeability due to injection of two Nanoparticles, Zinc and Aluminum, is investigated. Two cases of vertical and horizontal wells are considered and the recovery factors are determined and compared. The tests are performed for a five spot injection-production pattern which is designed for simulation in the Eclipse software. The results indicate that of the injection of the Zinc Nanoparticle in the reservoir will lead to increase in recovery factor in a shorter period of time in comparison with the Aluminum Nanoparticle.


Author(s):  
Saeed Delara ◽  
Kendra MacKay

Horizontal directional drilling (HDD) has become the preferred method for trenchless pipeline installations. Drilling pressures must be limited and a “no-drill zone” determined to avoid exceeding the strength of surrounding soil and rock. The currently accepted industry method of calculating hydraulic fracturing limiting pressure with application of an arbitrary safety factor contains several assumptions that are often not applicable to specific ground conditions. There is also no standard procedure for safety factor determination, resulting in detrimental impacts on drilling operations. This paper provides an analysis of the standard methods and proposes two alternative analytical models to more accurately determine the hydraulic fracture point and acceptable drilling pressure. These alternative methods provide greater understanding of the interaction between the drilling pressures and the surrounding ground strength properties. This allows for more accurate determination of horizontal directional drilling limitations. A comparison is presented to determine the differences in characteristics and assumptions for each model. The impact of specific soil properties and factors is investigated by means of a sensitivity analysis to determine the most critical soil information for each model.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 176
Author(s):  
Valery Astapenko ◽  
Andrei Letunov ◽  
Valery Lisitsa

The effect of plasma Coulomb microfied dynamics on spectral line shapes is under consideration. The analytical solution of the problem is unachievable with famous Chandrasekhar–Von-Neumann results up to the present time. The alternative methods are connected with modeling of a real ion Coulomb field dynamics by approximate models. One of the most accurate theories of ions dynamics effect on line shapes in plasmas is the Frequency Fluctuation Model (FFM) tested by the comparison with plasma microfield numerical simulations. The goal of the present paper is to make a detailed comparison of the FFM results with analytical ones for the linear and quadratic Stark effects in different limiting cases. The main problem is connected with perturbation additions laws known to be vector for small particle velocities (static line shapes) and scalar for large velocities (the impact limit). The general solutions for line shapes known in the frame of scalar perturbation additions are used to test the FFM procedure. The difference between “scalar” and “vector” models is demonstrated both for linear and quadratic Stark effects. It is shown that correct transition from static to impact limits for linear Stark-effect needs in account of the dependence of electric field jumping frequency in FFM on the field strengths. However, the constant jumping frequency is quite satisfactory for description of the quadratic Stark-effect. The detailed numerical comparison for spectral line shapes in the frame of both scalar and vector perturbation additions with and without jumping frequency field dependence for the linear and quadratic Stark effects is presented.


Author(s):  
M. von der Thannen ◽  
S. Hoerbinger ◽  
C. Muellebner ◽  
H. Biber ◽  
H. P. Rauch

AbstractRecently, applications of soil and water bioengineering constructions using living plants and supplementary materials have become increasingly popular. Besides technical effects, soil and water bioengineering has the advantage of additionally taking into consideration ecological values and the values of landscape aesthetics. When implementing soil and water bioengineering structures, suitable plants must be selected, and the structures must be given a dimension taking into account potential impact loads. A consideration of energy flows and the potential negative impact of construction in terms of energy and greenhouse gas balance has been neglected until now. The current study closes this gap of knowledge by introducing a method for detecting the possible negative effects of installing soil and water bioengineering measures. For this purpose, an environmental life cycle assessment model has been applied. The impact categories global warming potential and cumulative energy demand are used in this paper to describe the type of impacts which a bioengineering construction site causes. Additionally, the water bioengineering measure is contrasted with a conventional civil engineering structure. The results determine that the bioengineering alternative performs slightly better, in terms of energy demand and global warming potential, than the conventional measure. The most relevant factor is shown to be the impact of the running machines at the water bioengineering construction site. Finally, an integral ecological assessment model for applications of soil and water bioengineering structures should point out the potential negative effects caused during installation and, furthermore, integrate the assessment of potential positive effects due to the development of living plants in the use stage of the structures.


2021 ◽  
Vol 13 (13) ◽  
pp. 7251
Author(s):  
Mushk Bughio ◽  
Muhammad Shoaib Khan ◽  
Waqas Ahmed Mahar ◽  
Thorsten Schuetze

Electric appliances for cooling and lighting are responsible for most of the increase in electricity consumption in Karachi, Pakistan. This study aims to investigate the impact of passive energy efficiency measures (PEEMs) on the potential reduction of indoor temperature and cooling energy demand of an architectural campus building (ACB) in Karachi, Pakistan. PEEMs focus on the building envelope’s design and construction, which is a key factor of influence on a building’s cooling energy demand. The existing architectural campus building was modeled using the building information modeling (BIM) software Autodesk Revit. Data related to the electricity consumption for cooling, building masses, occupancy conditions, utility bills, energy use intensity, as well as space types, were collected and analyzed to develop a virtual ACB model. The utility bill data were used to calibrate the DesignBuilder and EnergyPlus base case models of the existing ACB. The cooling energy demand was compared with different alternative building envelope compositions applied as PEEMs in the renovation of the existing exemplary ACB. Finally, cooling energy demand reduction potentials and the related potential electricity demand savings were determined. The quantification of the cooling energy demand facilitates the definition of the building’s electricity consumption benchmarks for cooling with specific technologies.


2021 ◽  
Vol 13 (10) ◽  
pp. 5726
Author(s):  
Aleksandra Wewer ◽  
Pinar Bilge ◽  
Franz Dietrich

Electromobility is a new approach to the reduction of CO2 emissions and the deceleration of global warming. Its environmental impacts are often compared to traditional mobility solutions based on gasoline or diesel engines. The comparison pertains mostly to the single life cycle of a battery. The impact of multiple life cycles remains an important, and yet unanswered, question. The aim of this paper is to demonstrate advances of 2nd life applications for lithium ion batteries from electric vehicles based on their energy demand. Therefore, it highlights the limitations of a conventional life cycle analysis (LCA) and presents a supplementary method of analysis by providing the design and results of a meta study on the environmental impact of lithium ion batteries. The study focuses on energy demand, and investigates its total impact for different cases considering 2nd life applications such as (C1) material recycling, (C2) repurposing and (C3) reuse. Required reprocessing methods such as remanufacturing of batteries lie at the basis of these 2nd life applications. Batteries are used in their 2nd lives for stationary energy storage (C2, repurpose) and electric vehicles (C3, reuse). The study results confirm that both of these 2nd life applications require less energy than the recycling of batteries at the end of their first life and the production of new batteries. The paper concludes by identifying future research areas in order to generate precise forecasts for 2nd life applications and their industrial dissemination.


Sign in / Sign up

Export Citation Format

Share Document