The Power and Efficiency Limits of Piezoelectric Energy Harvesting

2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Michael W. Shafer ◽  
Ephrahim Garcia

The fundamental limits of cantilevered piezoelectric energy harvesters have not been well established. As with any other power generation technology, it is critical to establish the limits of power output and efficiency. Mathematical models for piezoelectric energy harvester power output have seen continued refinement, but these models have mainly been used and compared to individual harvester designs. Moreover, existing models all assume power scales with acceleration input, and take no account for the upper limit of the acceleration due to the ultimate strength of the piezoelectric material. Additionally, models for efficiency have been developed, but the limits have not been thoroughly explored. In this paper, we present the upper limits of input acceleration and output power for a piezoelectric harvester device. We then use these expressions, along with a previously developed ideal design method, to explore the upper limits of power production across a range of system masses and excitation frequencies. We also investigate general efficiency limits of these devices. We show the upper limit using an existing model and develop an alternate model that is applicable to excitation sources that are not capable of energy recovery.

Author(s):  
Jesse J. French ◽  
Colton T. Sheets

Wind energy capture in today’s environment is often focused on producing large amounts of power through massive turbines operating at high wind speeds. The device presented by the authors performs on the extreme opposite scale of these large wind turbines. Utilizing vortex induced vibration combined with developed and demonstrated piezoelectric energy harvesting techniques, the device produces power consistent with peer technologies in the rapidly growing field of micro-energy harvesting. Vortex-induced vibrations in the Karman vortex street are the catalyst for energy production of the device. To optimize power output, resonant frequency of the harvester is matched to vortex shedding frequency at a given wind speed, producing a lock-on effect that results in the greatest amplitude of oscillation. The frequency of oscillation is varied by altering the effective spring constant of the device, thereby allowing for “tuning” of the device to specific wind environments. While localized wind conditions are never able to be predicted with absolute certainty, patterns can be established through thorough data collection. Sampling of local wind conditions led to the design and testing of harvesters operating within a range of wind velocities between approximately 4 mph and 25 mph. For the extremities of this range, devices were constructed with resonant frequencies of approximately 17 and 163 Hz. Frequency variation was achieved through altering the material composition and geometry of the energy harvester. Experimentation was performed on harvesters to determine power output at optimized fluid velocity, as well as above and below. Analysis was also conducted on shedding characteristics of the device over the tested range of wind velocities. Computational modeling of the device is performed and compared to experimentally produced data.


2021 ◽  
Author(s):  
Αντιόπη-Μαλβίνα Σταματέλλου

Η πιεζοηλεκτρική συγκομιδή ενέργειας αφορά στην εκμετάλλευση μικροποσοτήτων ενέργειας από το περιβάλλον στην κλίμακα των mW, με βάση την αρχή του πιεζο-ηλεκτρικού φαινομένου. Ερευνάται εντατικά την τελευταία 20-ετία με στόχο να τροφοδοτηθούν απομακρυσμένα ασύρματα δίκτυα αισθητήρων, μικροηλεκτρονικές και βιοϊατρικές συσκευές στα πλαίσια της ευρείας διάδοσης του IoT, αποφεύγοντας τη χρήση συσσωρευτών και καλωδιώσεων. Παρά την σημαντική ερευνητική προσπάθεια οι τεχνολογίες της πιεζοηλεκτρικής συγκομιδής ενέργειας (PEH) ευρίσκονται ακόμη σε χαμηλό επίπεδο τεχνολογικής ετοιμότητας και υπάρχουν λίγες μόνο ολοκληρωμένες εφαρμογές. Έχοντας διαπιστώσει σχετική έλλειψη σε πειραματικές διερευνήσεις έναντι των καθαρά θεωρητικών, επιλέχθηκε ως κύριος αντικειμενικός στόχος της εργασίας η υποστήριξη της διαδικασίας σχεδιασμού των PEH μέσω πειραματικής διερεύνησης των χαρακτηριστικών λειτουργίας εμπορικά διαθέσιμων πιεζοηλεκτρικών μετατροπέων και ορισμού κατάλληλων δεικτών αξιολόγησης του βαθμού απόδοσης και της ειδικής ισχύος τους. Με τον τρόπο αυτό γίνεται εφικτή η δίκαια αξιολόγηση της πραγματικής απόδοσης των PEH κάτω από ελεγχόμενες συνθήκες ροϊκά επαγόμενης και μηχανικής ταλάντωσης. Οι εργαστηριακές δοκιμές πραγματοποιήθηκαν σε καινοτόμα σχεδιασμένες πειραματικές διατάξεις που κατασκευάστηκαν ειδικά για τις ανάγκες της διατριβής. Η επεξεργασία των αποτελεσμάτων έγινε τόσο με συμβατικές όσο και με καινοτόμες μεθόδους. Οι συγκεκριμένες διατάξεις επιτρέπουν την συστηματική αξιολόγηση της απόδοσης σε συνδυασμό ευρείας περιοχής συχνοτήτων ταλάντωσης βάσης και συνθηκών ροής, ώστε να γίνεται εφικτή η χαρτογράφηση σε δύο διαστάσεις της ειδικής ισχύος και του βαθμού απόδοσης. Αντίθετα με την επικρατούσα πρακτική του ορισμού βαθμού απόδοσης με βάση θεωρητικό γραμμικό μοντέλο της ταλάντωσης, διατυπώθηκε καινοτόμος ορισμός με βάση το ρυθμό μεταβολής της ελαστικής ενέργειας του πιεζοηλεκτρικού στοιχείου. Ο προτεινόμενος ορισμός είναι πιο ρεαλιστικός, αφού η ελαστική ενέργεια παραμόρφωσης κατέστη δυνατόν να μετρηθεί με βάση μεθοδολογία ψηφιοποίησης της ελαστικής γραμμής με χρήση γραμμικού laser που επιτρέπει την οπτικοποίηση με φωτογράφηση, αλλά και με βάση βιντεοσκόπηση σε 960 fps της ταλάντωσης. Έχει δε το πρόσθετο πλεονέκτημα ότι μπορεί να εφαρμοστεί και σε συνδυασμένη ροϊκή και μηχανική διέγερση. Η εργασία έλαβε υπόψη τον λεπτομερή σχεδιασμό των εξεταζόμενων πιεζοηλεκτρικών αισθητήρων, ως σύνθετης πλάκας σε καμπτική ταλάντωση, στους υπολογισμούς ελαστικής ενέργειας παραμόρφωσης, ειδικής ισχύος και βαθμού απόδοσης. Έγινε συγκριτική αξιολόγηση, με βάση την αναπτυχθείσα μεθοδολογία, δύο αντιπροσωπευτικών αισθητήρων με διαφορετικό πιεζοηλεκτρικό υλικό (PZT και PVDF), με επιπλέον χρήση υπερ-πυκνωτών (super capacitors) στο κύκλωμα αποθήκευσης της ηλεκτρικής ενέργειας, η οποία οδήγησε σε περαιτέρω αύξηση του βαθμού απόδοσης. Η συγκριτική αξιολόγηση των αισθητήρων αυτών οδήγησε σε χρήσιμα συμπεράσματα για περαιτέρω βελτιώσεις στο λεπτομερή σχεδιασμό τους, με στόχο την αύξηση της ειδικής ισχύος και βαθμού απόδοσης. Έγινε δε εφικτό να διεγερθεί ροϊκά ο μετατροπέας από PZT, υψηλής καμπτικής στιβαρότητας, με τοποθέτηση στο ελεύθερο άκρο του ειδικά σχεδιασμένης υπερκατασκευής, οπότε και επιβεβαιώθηκε ότι η συνδυασμένη διέγερση του συγκεκριμένου τύπου μετατροπέα ικανοποιεί την αρχή της επαλληλίας. Η νέα αυτή οπτική επιτρέπει την ορθολογική πλέον αξιολόγηση της απόδοσης διαφορετικού τύπου και σχεδιασμού αισθητήρων και παρέχει εξηγήσεις σχετικά με τις μεγάλες διακυμάνσεις των μεγεθών αυτών στην εξειδικευμένη βιβλιογραφία. Επιπλέον συνεισφέρει στην ορθολογική βελτιστοποίηση του σχεδιασμού των μετατροπέων ως σύνθετων πλακών, ώστε να ανταποκρίνονται στις ανάγκες συγκεκριμένων εφαρμογών, με λήψη υπόψη των επιπέδων διέγερσης των πηγών και τις διαθέσιμες θέσεις ταλάντωσης.


2018 ◽  
Vol 7 (3.7) ◽  
pp. 95
Author(s):  
Li Wah Thong ◽  
Yu Jing Bong ◽  
Swee Leong Kok ◽  
Roszaidi Ramlan

The utilization of vibration energy harvesters as a substitute to batteries in wireless sensors has shown prominent interest in the literature. Various approaches have been adapted in the energy harvesters to competently harvest vibrational energy over a wider spectrum of frequencies with optimize power output.   A typical bistable piezoelectric energy harvester, where the influence of magnetic field is induced into a linear piezoelectric cantilever, is designed and analyzed in this paper. The exploitations of the magnetic force specifically creates nonlinear response and bistability in the energy harvester that extends the operational frequency spectrum for optimize performance.  Further analysis on the effects of axial spacing displacement between two repulsive magnets of the harvester, in terms of x-axis (horizontal) and z-axis (vertical) on its natural resonant frequency and performance based on the frequency response curve are investigated for realizing optimal power output. Experimental results show that by selecting the optimal axial spacing displacement, the vibration energy harvester can be designed to produce maximized output power in an improved broadband of frequency spectrum.  


2012 ◽  
Vol 21 (10) ◽  
pp. 109601 ◽  
Author(s):  
Michael W Shafer ◽  
Matthew Bryant ◽  
Ephrahim Garcia

Author(s):  
Wei Wang ◽  
Junyi Cao ◽  
Ying Zhang ◽  
Chris R. Bowen

In recent decades, the technique of piezoelectric energy harvesting has drawn a great deal of attention since it is a promising method to convert vibrational energy to electrical energy to supply lower-electrical power consumption devices. The most commonly used configuration for energy harvesting is the piezoelectric cantilever beam. Due to the inability of linear energy harvesting to capture broadband vibrations, most researchers have been focusing on broadband performance enhancement by introducing nonlinear phenomena into the harvesting systems. Previous studies have often focused on the symmetric potential harvesters excited in a fixed direction and the influence of the gravity of the oscillators was neglected. However, it is difficult to attain a completely symmetric energy harvester in practice. Furthermore, the gravity of the oscillator due to the change of installation angle will also exert a dramatic influence on the power output. Therefore, this paper experimentally investigates the influence of gravity due to bias angle on the output performance of asymmetric potential energy harvesters under harmonic excitation. An experimental system is developed to measure the output voltages of the harvesters at different bias angles. Experimental results show that the bias angle has little influence on the performance of linear and monostable energy harvesters. However, for an asymmetric potential bistable harvester with sensitive nonlinear restoring forces, the bias angle influences the power output greatly due to the effect of gravity. There exists an optimum bias angle range for the asymmetric potential bistable harvester to generate large output power in a broader frequency range. The reason for this phenomenon is that the influence of gravity due to bias angle will balance the nonlinear asymmetric potential function in a certain range, which could be applied to improve the power output of asymmetric bistable harvesters.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6759
Author(s):  
Zdenek Machu ◽  
Ondrej Rubes ◽  
Oldrich Sevecek ◽  
Zdenek Hadas

This paper deals with analytical modelling of piezoelectric energy harvesting systems for generating useful electricity from ambient vibrations and comparing the usefulness of materials commonly used in designing such harvesters for energy harvesting applications. The kinetic energy harvesters have the potential to be used as an autonomous source of energy for wireless applications. Here in this paper, the considered energy harvesting device is designed as a piezoelectric cantilever beam with different piezoelectric materials in both bimorph and unimorph configurations. For both these configurations a single degree-of-freedom model of a kinematically excited cantilever with a full and partial electrode length respecting the dimensions of added tip mass is derived. The analytical model is based on Euler-Bernoulli beam theory and its output is successfully verified with available experimental results of piezoelectric energy harvesters in three different configurations. The electrical output of the derived model for the three different materials (PZT-5A, PZZN-PLZT and PVDF) and design configurations is in accordance with lab measurements which are presented in the paper. Therefore, this model can be used for predicting the amount of harvested power in a particular vibratory environment. Finally, the derived analytical model was used to compare the energy harvesting effectiveness of the three considered materials for both simple harmonic excitation and random vibrations of the corresponding harvesters. The comparison revealed that both PZT-5A and PZZN-PLZT are an excellent choice for energy harvesting purposes thanks to high electrical power output, whereas PVDF should be used only for sensing applications due to low harvested electrical power output.


2011 ◽  
Vol 40 (7) ◽  
pp. 1477-1484 ◽  
Author(s):  
Mahmoud Al Ahmad ◽  
H. N. Alshareef

Author(s):  
Raul B. Olympio ◽  
John Donahue ◽  
Adam M. Wickenheiser

Piezoelectric energy harvesters are devices capable of converting the kinetic energy present in vibration-based motion into electrical energy using piezoelectric transducers. This kind of device has its maximum efficiency when the exciting frequency matches its natural frequency. In the past years, some authors have explored the use of human motion as a vibration source, and harvesting energy in this situation is not trivial because the low-frequency characteristics of the motion are not compatible with small, light-weight transducers, which have relatively high natural frequencies. To overcome this problem, a method known as frequency up-conversion is used; it consists of a nonlinear vibration-based, magnetically excited harvester that exhibits frequency-independent performance, allowing the device to be efficient in a wide band of frequencies. In this work, the power output of a piezoelectric energy harvesting with frequency up-conversion submitted to walking and running vibrations is analyzed. Data are collected using an accelerometer located on the front pocket of each subject and then used in simulations. The model used consists of a cantilever beam with a permanent magnetic tip at the free end; this tip interacts with a magnetized structure that adds a nonlinear interaction to the model. A pure resistance matching the device’s impedance at its fundamental frequency is used to account for the output power. To verify the advantages of using the frequency up-conversion method for vibration-based energy harvesters regarding the power output and frequency band, a comparison with the linear cantilever model is analyzed. Also, in order to confirm the simulation results, a prototype of the device is built and submitted to vibration tests using a horizontally oriented motor-driven cart that recreates the motions recorded by the accelerometer; it is tested with and without the magnetic force in order to experimentally determine the nonlinearity’s effects on the power harvesting performance.


2015 ◽  
Vol 3 (18) ◽  
pp. 9837-9842 ◽  
Author(s):  
Erika M. A. Fuentes-Fernandez ◽  
Bruce E. Gnade ◽  
Manuel A. Quevedo-Lopez ◽  
Pradeep Shah ◽  
H. N. Alshareef

The effect of poling conditions on the power output of piezoelectric energy harvesters using sol–gel based Pb(Zr0.53,Ti0.47)O3–Pb(Zn1/3,Nb2/3)O3 piezoelectric thin-films has been investigated.


2017 ◽  
Vol 31 (07) ◽  
pp. 1741007 ◽  
Author(s):  
Kangqi Fan ◽  
Liansong Wang ◽  
Yingmin Zhu ◽  
Zhaohui Liu ◽  
Bo Yu

Harvesting energy from the surrounding environment through piezoelectric conversion is a promising method for implementing self-sustained low-power devices. To date, most piezoelectric energy harvesters (PEHs) developed can only scavenge energy from the unidirectional mechanical vibration. This deficiency severely limits the adaptability of PEHs because the real-world excitations may involve different mechanical motions and the mechanical vibration may come from various directions. To tackle this issue, we proposed a multipurpose PEH, which is composed of a ferromagnetic ball, a cylindrical track and four piezoelectric cantilever beams. In this paper, theoretical and experimental studies were carried out to examine the performance of the multipurpose PEH. The experimental results indicate that, under the vibrations that are perpendicular to the ground, the maximum peak voltage is increased by 3.2 V and the bandwidth of the voltage above 4 V is expanded by more than 4 Hz by the proposed PEH as compared to its linear counterpart; the maximum power output of 0.8 mW is attained when the PEH is excited at 39.5 Hz. Under the sway motion around different directions on the horizontal plane, significant power outputs, varying from 0.05 mW to 0.18 mW, are also generated by the multipurpose PEH when the sway angle is larger than 5[Formula: see text] and the sway frequency is smaller than 2.8 Hz. In addition, the multipurpose PEH demonstrates the capacity of collecting energy from the rotation motion, and approximately 0.14 mW power output is achieved when the rotation frequency is 1 Hz.


Sign in / Sign up

Export Citation Format

Share Document