Adhesive Contact on Randomly Rough Surfaces Based on the Double-Hertz Model

2013 ◽  
Vol 81 (5) ◽  
Author(s):  
Wei Zhang ◽  
Fan Jin ◽  
Sulin Zhang ◽  
Xu Guo

A cohesive zone model for rough surface adhesion is established by combining the double-Hertz model (Greenwood, J. A., and Johnson, K. L., 1998, “An Alternative to the Maugis Model of Adhesion Between Elastic Spheres,” J. Phys. D: Appl. Phys., 31, pp. 3279–3290) and the multiple asperity contact model (Greenwood, J. A., and Williamson, J. B. P., 1966, “Contact of Nominally Flat Surfaces,” Proc. R. Soc. Lond. A, 295, pp. 300–319). The rough surface is modeled as an ensemble of noninteracting asperities with identical radius of curvature and Gaussian distributed heights. By applying the double-Hertz theory to each individual asperity of the rough surface, the total normal forces for the rough surface are derived for loading and unloading stages, respectively, and a prominent adhesion hysteresis associated with dissipation energy is revealed. A dimensionless Tabor parameter is also introduced to account for general material properties. Our analysis results show that both the total pull-off force and the energy dissipation due to adhesive hysteresis are influenced by the surface roughness only through a single adhesion parameter, which measures statistically a competition between compressive and adhesive forces exerted by asperities with different heights. It is also found that smoother surfaces with a small adhesion parameter result in higher energy dissipation and pull-off force, while rougher surfaces with a large adhesion parameter lead to lower energy dissipation and pull-off force.

2006 ◽  
Vol 306-308 ◽  
pp. 187-192
Author(s):  
Yan Qing Wu ◽  
Hui Ji Shi

This study looks at the crack propagation characteristics based on the cohesive zone model (CZM), which is implemented as a user defined element within FE system ABAQUS. A planar crystal model is applied to the polycrystalline material at elevated temperature in which grain boundary regions are included. From the point of energy, interactions between the cohesive fracture process zones and matrix material are studied. It’s shown that the material parameter such as strain rate sensitivity of grain interior and grain boundary strongly influences the plastic and cohesive energy dissipation mechanisms. The higher the strain rate sensitivity is, the larger amount of the external work will be transformed into plastic dissipation energy than into cohesive energy which could delay the rupturing of cohesive zone. By comparisons, when strain rate sensitivity decreases, plastic dissipation energy is reduced and the cohesive dissipation energy increases. In this case, the cohesive zones fracture more quickly. In addition to the matrix material parameter, influence of cohesive strength and critical displacement in CZM on stress triaxiality at grain interior and grain boundary regions are also investigated. It’s shown that enhancing cohesive zones ductility could improve matrix materials resistance to void damage.


2020 ◽  
Vol 1 (1) ◽  
pp. 103-109
Author(s):  
Valentin L. Popov ◽  

n 1975, Fuller and Tabor have shown that roughness can destroy macroscopic adhesion. This means that in spite of the presence of adhesion at the microscopic scale, the macrosopic force of adhesion vanishes. The mechanism of vanishing macroscopic adhesion is very simple: during approach of elastic bodies, asperities are elastically deformed so strongly that after unloading they destroy the microscopic adhesive junctions. However, both in the moment of formation of microscopic adhesive junctions in the loading phase and their destruction during unloading, mechanical energy disappears. This means that the microscopic adhesion makes the contact dissipative even if there is no macroscopic force of adhesion. In particular, the force-distance dependency during indentation and pull-off do not coincide with each other showing some "adhesive hysteresis". When a ball rolls on such rough surface, there will be a final energy dissipation due to formation of a new contact at the frontline of the contact and its destruction at the rear part. Thus, microscopic adhesion will lead to appearance of rolling friction in an apparently non-adhesive contact. In the present paper, we calculate the approach and pull-off dependencies of force on distance, the dissipated energy in one loading-unloading cycle and estimate the force of rolling friction due to microscopic adhesion.


2012 ◽  
Vol 157-158 ◽  
pp. 1233-1237
Author(s):  
Le Feng Wang ◽  
Wei Bin Rong ◽  
Bing Shao ◽  
Li Ning Sun

Influence of the Tabor parameter on the roughness-induced adhesion hysteresis was investigated. To achieve this, the adhesive contact model of single asperities was considered by incorporating the Maugis-dugdale model and its corresponding extension firstly. Further more, the load-approach relationship of adhesive contact between a rough surface and a flat was analyzed. The dissipation energy during a load and unload cycle is derived for general values of the Tabor parameter. It was found that the adhesion hysteresis becomes weaker gradually with the increase of the adhesion parameter, and it becomes stronger with the decrease of the Tabor parameter at the same adhesion parameter. The adhesion hysteresis for a special case that rough surfaces with DMT(Deryagin-Muller-Toporov)-type asperities is also discussed.


2020 ◽  
Vol 10 (19) ◽  
pp. 6640
Author(s):  
Zhonghua Shi ◽  
Zhenhang Kang ◽  
Qiang Xie ◽  
Yuan Tian ◽  
Yueqing Zhao ◽  
...  

An effective deicing system is needed to be designed to conveniently remove ice from the surfaces of structures. In this paper, an ultrasonic deicing system for different configurations was estimated and verified based on finite element simulations. The research focused on deicing efficiency factor (DEF) discussions, prediction, and validations. Firstly, seven different configurations of Lead zirconate titanate (PZT) disk actuators with the same volume but different radius and thickness were adopted to conduct harmonic analysis. The effects of PZT shape on shear stresses and optimal frequencies were obtained. Simultaneously, the average shear stresses at the ice/substrate interface and total energy density needed for deicing were calculated. Then, a coefficient named deicing efficiency factor (DEF) was proposed to estimate deicing efficiency. Based on these results, the optimized configuration and deicing frequency are given. Furthermore, four different icing cases for the optimize configuration were studied to further verify the rationality of DEF. The effects of shear stress distributions on deicing efficiency were also analyzed. At same time, a cohesive zone model (CZM) was introduced to describe interface behavior of the plate and ice layer. Standard-explicit co-simulation was utilized to model the wave propagation and ice layer delamination process. Finally, the deicing experiments were carried out to validate the feasibility and correctness of the deicing system.


2021 ◽  
Vol 11 (1) ◽  
pp. 456
Author(s):  
Yanglong Zhong ◽  
Liang Gao ◽  
Xiaopei Cai ◽  
Bolun An ◽  
Zhihan Zhang ◽  
...  

The interface crack of a slab track is a fracture of mixed-mode that experiences a complex loading–unloading–reloading process. A reasonable simulation of the interaction between the layers of slab tracks is the key to studying the interface crack. However, the existing models of interface disease of slab track have problems, such as the stress oscillation of the crack tip and self-repairing, which do not simulate the mixed mode of interface cracks accurately. Aiming at these shortcomings, we propose an improved cohesive zone model combined with an unloading/reloading relationship based on the original Park–Paulino–Roesler (PPR) model in this paper. It is shown that the improved model guaranteed the consistency of the cohesive constitutive model and described the mixed-mode fracture better. This conclusion is based on the assessment of work-of-separation and the simulation of the mixed-mode bending test. Through the test of loading, unloading, and reloading, we observed that the improved unloading/reloading relationship effectively eliminated the issue of self-repairing and preserved all essential features. The proposed model provides a tool for the study of interface cracking mechanism of ballastless tracks and theoretical guidance for the monitoring, maintenance, and repair of layer defects, such as interfacial cracks and slab arches.


2021 ◽  
Vol 28 (1) ◽  
pp. 382-393
Author(s):  
Mazaher Salamt-Talab ◽  
Fatemeh Delzendehrooy ◽  
Alireza Akhavan-Safar ◽  
Mahdi Safari ◽  
Hossein Bahrami-Manesh ◽  
...  

Abstract In this article, mode II fracture toughness ( G IIc {G}_{\text{IIc}} ) of unidirectional E-glass/vinyl ester composites subjected to sulfuric acid aging is studied at two different temperatures (25 and 90°C). Specimens were manufactured using the hand lay-up method with the [ 0 ] 20 {{[}0]}_{20} stacking sequence. To study the effects of environmental conditions, samples were exposed to 30 wt% sulfuric acid at room temperature (25°C) for 0, 1, 2, 4, and 8 weeks. Some samples were also placed in the same solution but at 90°C and for 3, 6, 9, and 12 days to determine the interlaminar fracture toughness at different aging conditions. Fracture tests were conducted using end notched flexure (ENF) specimens according to ASTM D7905. The results obtained at 25°C showed that mode II fracture toughness increases for the first 2 weeks of aging and then it decreases for the last 8 weeks. It was also found that the flexural modulus changes with the same trend. Based on the results of the specimens aged at 90°C, a sharp drop in fracture toughness and flexural modulus with a significant decrease in maximum load have been observed due to the aging. Finite element simulations were performed using the cohesive zone model (CZM) to predict the global response of the tested beams.


Sign in / Sign up

Export Citation Format

Share Document