A Study on Biodiesel NOx Emission Control With the Reduced Chemical Kinetics Model

Author(s):  
Juncheng Li ◽  
Zhiyu Han ◽  
Cai Shen ◽  
Chia-fon Lee

In this paper, the effects of the start of injection (SOI) timing and exhaust gas recirculation (EGR) rate on the nitrogen oxides (NOx) emissions of a biodiesel-powered diesel engine are studied with computational fluid dynamics (CFD) coupling with a chemical kinetics model. The KIVA code coupling with a CHEMKIN-II chemistry solver is applied to the simulation of the in-cylinder combustion process. A surrogate biodiesel mechanism consisting of two fuel components is employed as the combustion model of soybean biodiesel. The in-cylinder combustion processes of the cases with four injection timings and three EGR rates are simulated. The simulation results show that the calculated NOx emissions of the cases with default EGR rate are reduced by 20.3% and 32.9% when the injection timings are delayed by 2- and 4-deg crank angle, respectively. The calculated NOx emissions of the cases with 24.0% and 28.0% EGR are reduced by 38.4% and 62.8%, respectively, compared to that of the case with default SOI and 19.2% EGR. But higher EGR rate deteriorates the soot emission. When EGR rate is 28.0% and SOI is advanced by 2 deg, the NOx emission is reduced by 55.1% and soot emission is controlled as that of the case with 24% EGR and default SOI. The NOx emissions of biodiesel combustion can be effectively improved by SOI retardation or increasing EGR rate. Under the studied engine operating conditions, introducing more 4.8% EGR into the intake air with unchanged SOI is more effective for NOx emission controlling than that of 4-deg SOI retardation with default EGR rate.

Author(s):  
Juncheng Li ◽  
Chia-fon F. Lee ◽  
Zhiyu Han ◽  
Cai Shen ◽  
Mianzhi Wang

In this paper, the effects of the start of injection (SOI) timing and EGR rate on the nitrogen oxide (NOx) emissions of biodiesel-powered diesel engine are studied with computational fluid dynamics (CFD) coupling with a chemical kinetics model. A surrogate biodiesel mechanism consisting of two fuel components is employed as the combustion model of soybean biodiesel. The in-cylinder combustion processes of the cases with four injection timings and three exhaust gas recirculation (EGR) rates are simulated. The simulation results show that the NOx emissions of biodiesel combustion can be effectively improved by SOI retardation or increasing EGR rate. The calculated NOx emissions of the cases with default EGR rate are reduced by 20.3% and 32.9% when the injection timings are delayed by 2-degree and 4-degree crank angle, respectively. The calculated NOx emissions of the cases with 24.0% and 28.0% EGR are reduced by 38.4% and 62.8%, respectively, compared to that of the case with default SOI and 19.2% EGR. But higher EGR rate deteriorates the soot emission. When EGR rate is 28.0% and SOI is advanced by 2-degree, the NOx emission is reduced by 55.1% and soot emission is controlled as that of the case with 24% EGR and default SOI.


Author(s):  
V Pirouzpanah ◽  
R Khoshbakhti Saray

Dual-fuel engines at part loads inevitably suffer from lower thermal efficiency and higher carbon monoxide and unburned fuel emission. The present work was carried out to investigate the combustion characteristics of a dual-fuel (diesel-gas) engine at part loads, using a single-zone combustion model with detailed chemical kinetics for combustion of natural gas fuel. The authors have developed software in which the pilot fuel is considered as a subsidiary zone and a heat source derived from two superimposedWiebe combustion functions to account for its contribution to ignition of the gaseous fuel and the rest of the total released energy. The chemical kinetics mechanism consists of 112 reactions with 34 species. This quasi-two-zone combustion model is able to establish the development of the combustion process with time and the associated important operating parameters, such as pressure, temperature, heat release rate (HRR), and species concentration. Therefore, this paper describes an attempt to investigate the combustion phenomenon at part loads and using hot exhaust gas recirculation (EGR) to improve the above-mentioned drawbacks and problems. By employing this technique, it is found that lower percentages of EGR and allowance for its thermal and radical effects have a positive influence on performance and emission parameters of dual-fuel engines at part loads. Predicted values show good agreement with corresponding experimental values under special engine operating conditions (quarter-load, 1400 r/min). Implications are discussed in detail.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1036 ◽  
Author(s):  
Xinying Xu ◽  
Qi Chen ◽  
Mifeng Ren ◽  
Lan Cheng ◽  
Jun Xie

Increasing the combustion efficiency of power plant boilers and reducing pollutant emissions are important for energy conservation and environmental protection. The power plant boiler combustion process is a complex multi-input/multi-output system, with a high degree of nonlinearity and strong coupling characteristics. It is necessary to optimize the boiler combustion model by means of artificial intelligence methods. However, the traditional intelligent algorithms cannot deal effectively with the massive and high dimensional power station data. In this paper, a distributed combustion optimization method for boilers is proposed. The MapReduce programming framework is used to parallelize the proposed algorithm model and improve its ability to deal with big data. An improved distributed extreme learning machine is used to establish the combustion system model aiming at boiler combustion efficiency and NOx emission. The distributed particle swarm optimization algorithm based on MapReduce is used to optimize the input parameters of boiler combustion model, and weighted coefficient method is used to solve the multi-objective optimization problem (boiler combustion efficiency and NOx emissions). According to the experimental analysis, the results show that the method can optimize the boiler combustion efficiency and NOx emissions by combining different weight coefficients as needed.


Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


2001 ◽  
Author(s):  
Qing Jiang ◽  
Chao Zhang

Abstract A study of the nitrogen oxides (NOx) emission and combustion process in a gas-fired regenerative, high temperature, low emission industrial furnace has been carried out numerically. The effect of two additives, methanol (CH3OH) and hydrogen peroxide (H2O2), to fuel on the NOx emission has been studied. A moment closure method with the assumed β probability density function (PDF) for mixture fraction is used in the present work to model the turbulent non-premixed combustion process in the furnace. The combustion model is based on the assumption of instantaneous full chemical equilibrium. The results showed that CH3OH is effective in the reduction of NOx in a regenerative industrial furnace. However, H2O2 has no significant effect on the NOx emission.


2013 ◽  
Vol 64 (1) ◽  
Author(s):  
Mohammad Nazri Mohd. Jaafar ◽  
Mohd Nur Hanafi Zaini

Emission from the combustion processes can cause adverse effect to the environment.  The formation of pollutants such as NOx, CO, CO2 and SOx are hazardous and harmful to the ecosystem.  The awareness about the pollution due to the combustion activities, particularly in industrial field has set off an effort to find more comprehensive and enhanced technologies to reduce these pollutants.  There are several methods that can be used to reduce the emissions of these pollutants either by combustion modifications or post combustion treatment.  In this research, the method used is the post combustion treatment, i.e. the air staging method.  By air staging techniques, some of the combustion air will be directed into the primary combustion zone, while the remaining air is directed into the secondary zone.  The function of the secondary air is to reduce the peak flame temperatures, which theoretically reduce the emissions of NOx emissions.  The primary concern for this research is to study the effectiveness of the air staging in reducing NOx, CO, SO2, and UHC emissions from the combustion process.  The results obtained showed significant reduction in all major pollutants, i.e., a 31.8 percent reduction for CO emission, 16.8 percent for NOx, 12.7 percent for SO2 and 10.3 percent for UHC.  These reductions were obtained at different equivalence ratios for different gases.


Author(s):  
Zhu (Julie) Meng ◽  
Robert J. Hoffa ◽  
Charles A. DeMilo ◽  
Todd T. Thamer

The combustion process in gas-turbine engines produces emissions, especially nitrogen oxides (NOx) and carbon monoxide (CO), which change dramatically with combustor operating conditions. As part of this study, the application of active feedback control technologies to reduce thermal NOx emissions is modeled numerically and demonstrated experimentally. A new optical flame sensor, designed by Ametek Power & Industrial Products, has been successfully implemented as the feedback element in a proof-of-concept control system used to minimize NOx emissions. The sensor consists of a robust mechanical package, as well as electronics suitable for severe gas-turbine environments. Results from system rig tests correlate closely to theoretical predictions, as described in literature and produced by a control system simulation model. The control system simulation model predicts the efficacy of controlling engine operating characteristics based on chemical luminescence of the OH radical. The model consists of a fuel pump and metering device, a fuel-air mixing scheme, a combustion model, the new ultraviolet (UV) feedback flame sensor, and a simple gain block. The input reference to the proportional emissions control is the fuel-to-air equivalence ratio, which is empirically correlated to the desired low level of NOx emissions while satisfying other operating conditions, such as CO emissions and power. Results from the closed-loop emissions control simulation and rig tests were analyzed to determine the capability of the UV flame sensor to measure and control the combustion process in a gas-turbine engine. The response characteristics, overshoot percentage, rise time, settling time, accuracy, resolution, and repeatability are addressed.


Author(s):  
Seung Hyup Ryu ◽  
Ki Doo Kim ◽  
Wook Hyeon Yoon ◽  
Ji Soo Ha

Accurate heat release analysis based on the cylinder pressure trace is important for evaluating combustion process of diesel engines. However, traditional single-zone heat release models (SZM) have significant limitations due mainly to their simplified assumptions of uniform charge and homogeneity while neglecting local temperature distribution inside cylinder during combustion process. In this study, a heat release analysis based on single-zone model has been evaluated by comparison with computational analysis result using Fire-code, which is based on multi-dimensional model (MDM). The limitations of the single-zone assumption have been estimated. To overcome these limitations, an improved model that includes the effects of spatial non-uniformity has been applied. From this improved single-zone heat release model (Improved-SZM), two effective values of specific heats ratios, denoted by γV and γH in this study, have been introduced. These values are formulated as the function of charge temperature changing rate and overall equivalence ratio by matching the results of the single-zone analysis to those of computational analysis using Fire-code about medium speed marine diesel engine. Also, it is applied that each equation of γV and γH has respectively different slopes according to several meaningful regions such as the start of injection, the end of injection, the maximum cylinder temperature, and the exhaust valve open. This calculation method based on improved single-zone model gives a good agreement with Fire-code results over the whole range of operating conditions.


Author(s):  
Alessandro Innocenti ◽  
Antonio Andreini ◽  
Andrea Giusti ◽  
Bruno Facchini ◽  
Matteo Cerutti ◽  
...  

In the present paper a numerical analysis of a low NOx partially premixed burner for industrial gas turbine applications is presented. The first part of the work is focused on the study of the premixing process inside the burner. Standard RANS CFD approach was used: k–ε turbulence model was modified and calibrated in order to find a configuration able to fit available experimental profiles of fuel/air concentration at the exit of the burner. The resulting profiles at different test points have been used to perform reactive simulations of an experimental test rig, where exhaust NOx emissions were measured. An assessment of the turbulent combustion model was carried out with a critical investigation of the expected turbulent combustion regimes in the system and taking into account the partially premixed nature of the flame due to the presence of diffusion type pilot flames. A reliable numerical setup was discovered by comparing predicted and measured NOx emissions at different operating conditions and at different split ratio between main and pilot fuel. In the investigated range, the influence of the premixer in the NOx formation rate was found to be marginal if compared with the pilot flame one. The calibrated numerical setup was then employed to explore possible modifications to fuel injection criteria and fuel split, with the aim of minimizing exhaust NOx emissions. This preliminary numerical screening of alternative fuel injection strategies allowed to define a set of advanced configurations to be investigated in future experimental tests.


Sign in / Sign up

Export Citation Format

Share Document