A Study on Biodiesel NOx Emission Control With the Reduced Chemical Kinetics Model

Author(s):  
Juncheng Li ◽  
Chia-fon F. Lee ◽  
Zhiyu Han ◽  
Cai Shen ◽  
Mianzhi Wang

In this paper, the effects of the start of injection (SOI) timing and EGR rate on the nitrogen oxide (NOx) emissions of biodiesel-powered diesel engine are studied with computational fluid dynamics (CFD) coupling with a chemical kinetics model. A surrogate biodiesel mechanism consisting of two fuel components is employed as the combustion model of soybean biodiesel. The in-cylinder combustion processes of the cases with four injection timings and three exhaust gas recirculation (EGR) rates are simulated. The simulation results show that the NOx emissions of biodiesel combustion can be effectively improved by SOI retardation or increasing EGR rate. The calculated NOx emissions of the cases with default EGR rate are reduced by 20.3% and 32.9% when the injection timings are delayed by 2-degree and 4-degree crank angle, respectively. The calculated NOx emissions of the cases with 24.0% and 28.0% EGR are reduced by 38.4% and 62.8%, respectively, compared to that of the case with default SOI and 19.2% EGR. But higher EGR rate deteriorates the soot emission. When EGR rate is 28.0% and SOI is advanced by 2-degree, the NOx emission is reduced by 55.1% and soot emission is controlled as that of the case with 24% EGR and default SOI.

Author(s):  
Juncheng Li ◽  
Zhiyu Han ◽  
Cai Shen ◽  
Chia-fon Lee

In this paper, the effects of the start of injection (SOI) timing and exhaust gas recirculation (EGR) rate on the nitrogen oxides (NOx) emissions of a biodiesel-powered diesel engine are studied with computational fluid dynamics (CFD) coupling with a chemical kinetics model. The KIVA code coupling with a CHEMKIN-II chemistry solver is applied to the simulation of the in-cylinder combustion process. A surrogate biodiesel mechanism consisting of two fuel components is employed as the combustion model of soybean biodiesel. The in-cylinder combustion processes of the cases with four injection timings and three EGR rates are simulated. The simulation results show that the calculated NOx emissions of the cases with default EGR rate are reduced by 20.3% and 32.9% when the injection timings are delayed by 2- and 4-deg crank angle, respectively. The calculated NOx emissions of the cases with 24.0% and 28.0% EGR are reduced by 38.4% and 62.8%, respectively, compared to that of the case with default SOI and 19.2% EGR. But higher EGR rate deteriorates the soot emission. When EGR rate is 28.0% and SOI is advanced by 2 deg, the NOx emission is reduced by 55.1% and soot emission is controlled as that of the case with 24% EGR and default SOI. The NOx emissions of biodiesel combustion can be effectively improved by SOI retardation or increasing EGR rate. Under the studied engine operating conditions, introducing more 4.8% EGR into the intake air with unchanged SOI is more effective for NOx emission controlling than that of 4-deg SOI retardation with default EGR rate.


Author(s):  
V Pirouzpanah ◽  
R Khoshbakhti Saray

Dual-fuel engines at part loads inevitably suffer from lower thermal efficiency and higher carbon monoxide and unburned fuel emission. The present work was carried out to investigate the combustion characteristics of a dual-fuel (diesel-gas) engine at part loads, using a single-zone combustion model with detailed chemical kinetics for combustion of natural gas fuel. The authors have developed software in which the pilot fuel is considered as a subsidiary zone and a heat source derived from two superimposedWiebe combustion functions to account for its contribution to ignition of the gaseous fuel and the rest of the total released energy. The chemical kinetics mechanism consists of 112 reactions with 34 species. This quasi-two-zone combustion model is able to establish the development of the combustion process with time and the associated important operating parameters, such as pressure, temperature, heat release rate (HRR), and species concentration. Therefore, this paper describes an attempt to investigate the combustion phenomenon at part loads and using hot exhaust gas recirculation (EGR) to improve the above-mentioned drawbacks and problems. By employing this technique, it is found that lower percentages of EGR and allowance for its thermal and radical effects have a positive influence on performance and emission parameters of dual-fuel engines at part loads. Predicted values show good agreement with corresponding experimental values under special engine operating conditions (quarter-load, 1400 r/min). Implications are discussed in detail.


1993 ◽  
Vol 115 (4) ◽  
pp. 781-789 ◽  
Author(s):  
S.-C. Kong ◽  
R. D. Reitz

Ignition and combustion mechanisms in diesel engines were studied using the KIVA code, with modifications to the combustion, heat transfer, crevice flow, and spray models. A laminar-and-turbulent characteristic-time combustion model that has been used successfully for spark-ignited engine studies was extended to allow predictions of ignition and combustion in diesel engines. A more accurate prediction of ignition delay was achieved by using a multistep chemical kinetics model. The Shell knock model was implemented for this purpose and was found to be capable of predicting successfully the autoignition of homogeneous mixtures in a rapid compression machine and diesel spray ignition under engine conditions. The physical significance of the model parameters is discussed and the sensitivity of results to the model constants is assessed. The ignition kinetics model was also applied to simulate the ignition process in a Cummins diesel engine. The post-ignition combustion was simulated using both a single-step Arrhenius kinetics model and also the characteristic-time model to account for the energy release during the mixing-controlled combustion phase. The present model differs from that used in earlier multidimensional computations of diesel ignition in that it also includes state-of-the-art turbulence and spray atomization models. In addition, in this study the model predictions are compared to engine data. It is found that good levels of agreement with the experimental data are obtained using the multistep chemical kinetics model for diesel ignition modeling. However, further study is needed of the effects of turbulent mixing on post-ignition combustion.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3828 ◽  
Author(s):  
Juntao Han ◽  
Guofeng Lou ◽  
Sizong Zhang ◽  
Zhi Wen ◽  
Xunliang Liu ◽  
...  

The new process of flue gas recirculation, which reduces coke consumption and reducing NOx emissions, is now extensively used. Compared with traditional sintering, the characteristics of circulating flue gas and coke parameters significantly affect the combustion atmosphere and coke combustion efficiency. Based on the actual complex process of sintering machine, this study proposes a relatively comprehensive one-dimensional, unsteady mathematical model for flue gas recirculation research. The model encompasses NOx pollutant generation and reduction, as well as SO2 generation and adsorption. We focus on the effects of cyclic flue gas characteristics on the sintering-bed temperature and NOx emissions, which are rarely studied, and provide a theoretical basis for NOx emission reduction. Simulation results show that during sintering, the fuel NOx is reduced by 50% and 10% when passing through the surface of coke particles and CO, respectively. During flue gas recirculation sintering, the increase in circulating gas O2 content, temperature, and supply-gas volume cause increased combustion efficiency of coke, reducing atmosphere, and NOx content in the circulating area; the temperature of the material layer also increases significantly and the sintering endpoint advances. During cyclic sintering, the small coke size and increased coke content increase the char-N release rate while promoting sufficient contact of NOx with the coke surface. Consequently, the NOx reduction rate increases. Compared with the conventional sintering, the designed flue gas recirculation condition saves 3.75% of coke consumption, i.e., for 1.2 kg of solid fuel per ton of sinter, the amount of flue gas treatment is reduced by 21.64% and NOx emissions is reduced by 23.59%. Moreover, without changing the existing sintering equipment, sintering capacity increases by about 5.56%.


1995 ◽  
Vol 117 (4) ◽  
pp. 290-296 ◽  
Author(s):  
Y. Tao ◽  
K. B. Hodgins ◽  
P. G. Hill

The performance and emission characteristics of a single-cylinder two-stroke diesel engine fueled with direct injection of natural gas entrained with pilot diesel ignition enhancer have been measured. The thermal efficiency of the optimum gas-diesel operation was shown to exceed that of the conventional diesel at full load, but to be less at part load where the ignition delay was excessive. At high load, where the NOx emission problem is most serious, substantial reduction in NOx emission rate was obtained with delay of injection timing and also with use of exhaust gas recirculation. Measured cylinder pressures were used with a three-zone combustion model to determine ignition delay and the temperatures of the burned gas. The predicted NOx emissions based on equilibrium concentration of NO at the maximum burned gas temperature were found to correlate closely with exhaust pipe measurements of NOx.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5335
Author(s):  
Wei Yan ◽  
Tengyao Dou ◽  
Jinbo Wang ◽  
Na Mei ◽  
Guoxiang Li

The assembly consistency of a diesel engine will affect its nitrogen oxides (NOx) emission variation. In order to improve the NOx emissions of diesel engines, a study was carried out based on the assembly tolerance variation of the diesel engine’s combustion system. Firstly, a diesel engine which meets the Euro VI standards together with the experimental data is obtained. The mesh model and combustion model of the engine combustion system are built in the Converge software (version 2.4, Tecplot, Bellevue, DC, USA), and the experimental data is used to calibrate the combustion model obtained in the Converge software. Then, the four-factor and three-level orthogonal simulation experiments are carried out on the dimension parameters that include nozzle extension height, throat diameter, shrinkage diameter and combustion chamber depth. Through mathematical analysis on the experimental data, the results show that the variation of nozzle extension height and combustion chamber depth have a strong influence on NOx emission results, and the variation of combustion chamber diameter also has a weak influence on NOx production. According to the regression model obtained from the analysis, there is a quadratic function relating the nozzle extension height and NOx emissions and the amount of NOx increases with increasing nozzle extension height. The relationship between emission performance and size parameters is complex. In the selected size range, the influence of the variation of the chamber diameter on NOx is linear. The variation of the chamber depth also has an effect on NOx production, and the simulation results vary with the change of assembly tolerance variation. Thus, in the engine assembly process, it is necessary to strictly control the nozzle extension height and combustion chamber depth. The research results are useful to improve the NOx emission of diesel engine and provide a basis for the control strategy of selective catalytic reduction (SCR) devices.


Author(s):  
Song-Charng Kong ◽  
Yong Sun ◽  
Rolf D. Reitz

A detailed chemistry-based CFD model was developed to simulate the diesel spray combustion and emission process. A reaction mechanism of n-heptane is coupled with a reduced NOx mechanism to simulate diesel fuel oxidation and NOx formation. The soot emission process is simulated by a phenomenological soot model that uses a competing formation and oxidation rate formulation. The model is applied to predict the diesel spray lift-off length and its sooting tendency under high temperature and pressure conditions with good agreement with experiments of Sandia. Various nozzle diameters and chamber conditions were investigated. The model successfully predicts that the sooting tendency is reduced as the nozzle diameter is reduced and/or the initial chamber gas temperature is decreased, as observed by the experiments. The model is also applied to simulate diesel engine combustion under PCCI-like conditions. Trends of heat release rate, NOx and soot emissions with respect to EGR levels and start-of-injection timings are also well predicted. Both experiments and models reveal that soot emissions peak when the start of injection occurs close to TDC. The model indicates that low soot emission at early SOI is due to better oxidation while low soot emission at late SOI is due to less formation. Since NOx emissions decrease monotonically with injection retardation, a late injection scheme can be utilized for simultaneous soot and NOx reduction for the engine conditions investigated in this study.


2005 ◽  
Vol 129 (1) ◽  
pp. 245-251 ◽  
Author(s):  
Song-Charng Kong ◽  
Yong Sun ◽  
Rolf D. Rietz

A detailed chemistry-based CFD model was developed to simulate the diesel spray combustion and emission process. A reaction mechanism of n-heptane is coupled with a reduced NOx mechanism to simulate diesel fuel oxidation and NOx formation. The soot emission process is simulated by a phenomenological soot model that uses a competing formation and oxidation rate formulation. The model is applied to predict the diesel spray lift-off length and its sooting tendency under high temperature and pressure conditions with good agreement with experiments of Sandia. Various nozzle diameters and chamber conditions were investigated. The model successfully predicts that the sooting tendency is reduced as the nozzle diameter is reduced and/or the initial chamber gas temperature is decreased, as observed by the experiments. The model is also applied to simulate diesel engine combustion under premixed charge compression ignition (PCCI) conditions. Trends of heat release rate, NOx, and soot emissions with respect to EGR levels and start-of-injection timings are also well predicted. Both experiments and models reveal that soot emissions peak when the start of injection (SOI) occurs close to TDC. The model indicates that low soot emission at early SOI is due to better oxidation while low soot emission at late SOI is due to less formation. Since NOx emissions decrease monotonically with injection retardation, a late injection scheme can be utilized for simultaneous soot and NOx reduction for the engine conditions investigated in this study.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1036 ◽  
Author(s):  
Xinying Xu ◽  
Qi Chen ◽  
Mifeng Ren ◽  
Lan Cheng ◽  
Jun Xie

Increasing the combustion efficiency of power plant boilers and reducing pollutant emissions are important for energy conservation and environmental protection. The power plant boiler combustion process is a complex multi-input/multi-output system, with a high degree of nonlinearity and strong coupling characteristics. It is necessary to optimize the boiler combustion model by means of artificial intelligence methods. However, the traditional intelligent algorithms cannot deal effectively with the massive and high dimensional power station data. In this paper, a distributed combustion optimization method for boilers is proposed. The MapReduce programming framework is used to parallelize the proposed algorithm model and improve its ability to deal with big data. An improved distributed extreme learning machine is used to establish the combustion system model aiming at boiler combustion efficiency and NOx emission. The distributed particle swarm optimization algorithm based on MapReduce is used to optimize the input parameters of boiler combustion model, and weighted coefficient method is used to solve the multi-objective optimization problem (boiler combustion efficiency and NOx emissions). According to the experimental analysis, the results show that the method can optimize the boiler combustion efficiency and NOx emissions by combining different weight coefficients as needed.


Sign in / Sign up

Export Citation Format

Share Document