Laminar Natural Convection Between a Vertical Surface With Uniform Heat Flux and Pseudoplastic and Dilatant Fluids

2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Massimo Capobianchi ◽  
A. Aziz

This paper reports the average Nusselt number for steady, laminar natural convection between a vertical surface and otherwise quiescent pseudoplastic and dilatant fluids under a constant and uniform surface heat flux boundary condition. Models for the fluids' apparent viscosity were utilized that are valid in all five regions of the flow curve. The results are thus applicable for whatever shear rates may exist within the flow field and a dimensionless shear rate parameter was identified that quantifies the shear rate region where the given system is operating. The data indicate that the average Nusselt numbers approach the corresponding Newtonian values when the shear rates are predominantly in either the zero or the infinite shear rate Newtonian regions. However, power law values are approached only when both of the following two conditions are met: (1) the shear rates are principally in the power law region and (2) the fluid's limiting zero and infinite shear rate Newtonian viscosities differ sufficiently, by approximately 4 orders of magnitude or more. For all other cases, the average Nusselt number was found to reside between the Newtonian and the power law asymptotes. Results are provided in both graphical and tabular form over a broad range of system parameters.

2019 ◽  
pp. 424-424
Author(s):  
Oussama Benhizia ◽  
Mohamed Bouzit ◽  
Ahmed Dellil

This work is about studying the natural convection of two-dimensional steady state non-Newtonian power law fluid numerically. The inner cylinder was put eccentrically into the outer one. The cylinders are held at constant temperatures with the inner one heated isothermally at temperature Th and the outer one cooled isothermally at temperature Tc (Th>Tc). The simulations have been taken for the parameters 103?Ra?105, 10?Pr?103, 0.6?n?1.4, 0???0.9 and an inclination angle ? from 0? up to 90?. The average Nusselt numbers for the previous parameters are obtained and discussed numerically. The results revealed that the average Nusselt number has the highest values when n=0.6, Ra=105 at ?=0 which is a signal for the large transfer herein and has the lowest values for n=1.4, Ra=103 at ?=90? which is a signal that the transfer is by conduction more than convection. Furthermore, the increasing of eccentricity causes an increase in the Nusselt number for all the cases. Finally, the best case where we can get the best heat transfer is at ? = 0, ?=0.9 among them all. The results have compared with some precedent works and showed good agreement.


2012 ◽  
Vol 134 (12) ◽  
Author(s):  
Osman Turan ◽  
Anuj Sachdeva ◽  
Robert J. Poole ◽  
Nilanjan Chakraborty

Two-dimensional steady-state laminar natural convection of inelastic power-law non-Newtonian fluids in square enclosures with differentially heated sidewalls subjected to constant wall heat flux (CHWF) are studied numerically. To complement the simulations, a scaling analysis is also performed to elucidate the anticipated effects of Rayleigh number (Ra), Prandtl number (Pr) and power-law index (n) on the Nusselt number. The effects of n in the range 0.6 ≤ n ≤ 1.8 on heat and momentum transport are investigated for nominal values Ra in the range 103–106 and a Pr range of 10–105. In addition the results are compared with the constant wall temperature (CWT) configuration. It is found that the mean Nusselt number Nu¯ increases with increasing values of Ra for both Newtonian and power-law fluids in both configurations. However, the Nu¯ values for the vertical walls subjected to CWHF are smaller than the corresponding values in the same configuration with CWT (for identical values of nominal Ra, Pr and n). The Nu¯ values obtained for power-law fluids with n<1 (n>1) are greater (smaller) than that obtained in the case of Newtonian fluids with the same nominal value of Ra due to strengthening (weakening) of convective transport. With increasing shear-thickening (i.e., n > 1) the mean Nusselt number Nu¯ settles to unity (Nu¯=1.0) as heat transfer takes place principally due to thermal conduction. The effects of Pr are shown to be essentially negligible in the range 10–105. New correlations are proposed for the mean Nusselt number Nu¯ for both Newtonian and power-law fluids.


2006 ◽  
Vol 129 (6) ◽  
pp. 717-726 ◽  
Author(s):  
Kamil Kahveci

This numerical study looks at laminar natural convection in an enclosure divided by a partition with a finite thickness and conductivity. The enclosure is assumed to be heated using a uniform heat flux on a vertical wall, and cooled to a constant temperature on the opposite wall. The governing equations in the vorticity-stream function formulation are solved by employing a polynomial-based differential quadrature method. The results show that the presence of a vertical partition has a considerable effect on the circulation intensity, and therefore, the heat transfer characteristics across the enclosure. The average Nusselt number decreases with an increase of the distance between the hot wall and the partition. With a decrease in the thermal resistance of the partition, the average Nusselt number shows an increasing trend and a peak point is detected. If the thermal resistance of the partition further declines, the average Nusselt number begins to decrease asymptotically to a constant value. The partition thickness has little effect on the average Nusselt number.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
A. Torkfar ◽  
S. M. A. Noori Rahim Abadi ◽  
A. Ahmadpour

Abstract In this study, natural convection of non-Newtonian power-law fluids around an array of elliptic cylinders has been investigated numerically. The governing equations have been solved using an in-house computational fluid dynamics code based on the well-known finite volume method. It is assumed that the flow and temperature fields are laminar, steady, and two-dimensional. Furthermore, due to the low-temperature difference between the tube walls and the surrounding fluid, the changes in the physical properties of the fluids are neglected. The numerical results are validated against the available experimental and numerical results. The results show that by increasing the non-Newtonian fluid power-law index, the ratio of average Nusselt number of the ith cylinder to the average Nusselt number of a single cylinder under identical thermal conditions decreases. Moreover, it is found that the increase in the ratio of the distance between elliptic centers and the elliptic vertical diameter increases the ratio of the average Nusselt number of ith cylinder to the average Nusselt number for a single cylinder. Finally, a mathematical expression is given for the array averaged Nusselt number.


1991 ◽  
Vol 113 (3) ◽  
pp. 194-199 ◽  
Author(s):  
M. M. Elshamy ◽  
M. N. Ozisik

The steady-state laminar natural convection for air bounded by a hot plate and a cold cylindrical enclosure has been studied numerically for the case of cold isothermal cylinder and hot isothermal plate. A correlation is presented for the average Nusselt number over the range of Rayleigh number from 105 to 106 for different values of the width-aspect ratio Sw and thickness aspect-ratio St of the plate. It is found that the average Nusselt number increases with increasing Sw and Rayleigh number. A two-cell pattern is observed for Sw=1.5 and less. The effect of Sw on the average Nusselt number is found to be stronger than that of St.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Ahmed Kadari ◽  
Nord-Eddine Sad Chemloul ◽  
Said Mekroussi

Laminar natural convection in differentially heated square cavity with right cold wavy wall and horizontal conducting fin attached to its left hot wall has been investigated numerically. The vertical walls are maintained at different isothermal temperatures, while the horizontal walls are insulated. The fluid that filled the cavity is air with Prandtl number of 0.71. The investigation has been performed for Rayleigh number in the range of 103–106, the thermal conductivity ratio was varied from 10 to 105, three fin lengths and positions have been examined (0.25, 0.5, and 0.75), and three numbers of undulation were tested (one, two, and three undulations). The wave amplitude and the fin thickness were kept constant at 0.05 and 0.04, respectively. The results obtained show that increasing the fin thermal conductivity or the Rayleigh number increases the average Nusselt number especially when the fin length increases. It was also found that the fin position enhances the heat transfer when the fin is placed opposite to the crest of the wavy wall. The trend of the local Nusselt number is wavy. The effect of undulations number appears when the fin length is greater than 0.5. The average Nusselt number enhanced when a conducting fin is added to the cavity with wavy wall and without fin by 51.23% and 56.85% for one and three undulations, respectively, when the Rayleigh number is 105 and the fin length is 0.75.


Author(s):  
Jaspinder Kaur ◽  
Roderick Melnik ◽  
Anurag Kumar Tiwari

Abstract In this present work, forced convection heat transfer from a heated blunt-headed cylinder in power-law fluids has been investigated numerically over the range of parameters, namely, Reynolds number (Re): 1–40, Prandtl number (Pr): 10–100 and power-law index (n): 0.3–1.8. The results are expressed in terms of local parameters, like streamline, isotherm, pressure coefficient, and local Nusselt number and global parameters, like wake length, drag coefficient, and average Nusselt number. The length of the recirculation zone on the rear side of the cylinder increases with the increasing value of Re and n. The effect of the total drag coefficient acting on the cylinder is seen to be higher at the low value of Re and its effect significant in shear-thinning fluids (n < 1). On the heat transfer aspect, the rate of heat transfer in fluids is increased by increasing the value of Re and Pr. The effect of heat transfer is enhanced in shear-thinning fluids up to ∼ 40% and it impedes it’s to ∼20% shear-thickening fluids. In the end, the numerical results of the total drag coefficient and average Nusselt number (in terms of J H −factor) have been correlated by simple expression to estimate the intermediate value for the new application.


2003 ◽  
Vol 125 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Chang-Yuan Liu ◽  
Ying-Huei Hung

Both experimental and theoretical investigations on the heat transfer and flow friction characteristics of compact cold plates have been performed. From the results, the local and average temperature rises on the cold plate surface increase with increasing chip heat flux or decreasing air mass flow rate. Besides, the effect of chip heat flux on the thermal resistance of cold plate is insignificant; while the thermal resistance of cold plate decreases with increasing air mass flow rate. Three empirical correlations of thermal resistance in terms of air mass flow rate with a power of −0.228 are presented. As for average Nusselt number, the effect of chip heat flux on the average Nusselt number is insignificant; while the average Nusselt number of the cold plate increases with increasing Reynolds number. An empirical relationship between Nu¯cp and Re can be correlated. In the flow frictional aspect, the overall pressure drop of the cold plate increases with increasing air mass flow rate; while it is insignificantly affected by chip heat flux. An empirical correlation of the overall pressure drop in terms of air mass flow rate with a power of 1.265 is presented. Finally, both heat transfer performance factor “j” and pumping power factor “f” decrease with increasing Reynolds number in a power of 0.805; while they are independent of chip heat flux. The Colburn analogy can be adequately employed in the study.


Sign in / Sign up

Export Citation Format

Share Document