Steady Vortex-Generator Jet Flow Control on a Highly Loaded Transonic Low-Pressure Turbine Cascade: Effects of Compressibility and Roughness

2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Chiara Bernardini ◽  
Stuart I. Benton ◽  
John D. Lee ◽  
Jeffrey P. Bons ◽  
Jen-Ping Chen ◽  
...  

A new high-speed linear cascade has been developed for low-pressure turbine (LPT) studies at The Ohio State University. A compressible LPT profile is tested in the facility and its baseline performance at different operating conditions is assessed by means of isentropic Mach number distribution and wake total pressure losses. Active flow control is implemented through a spanwise row of vortex-generator jets (VGJs) located at 60% chord on the suction surface. The purpose of the study is to document the effectiveness of VGJ flow control in high-speed compressible flow. The effect on shock-induced separation is assessed by Mach number distribution, wake loss surveys and shadowgraph. Pressure sensitive paint (PSP) is applied to understand the three dimensional flow and shock pattern developing from the interaction of the skewed jets and the main flow. Data show that with increasing blowing ratio, the losses are first decreased due to separation reduction, but losses connected to compressibility effects become stronger due to increased passage shock strength and jet orifice choking; therefore, the optimum blowing ratio is a tradeoff between these counteracting effects. The effect of added surface roughness on the uncontrolled flow and on flow control behavior is also investigated. At lower Mach number, turbulent separation develops on the rough surface and a different flow control performance is observed. Steady VGJs appear to have control authority even on a turbulent separation but higher blowing ratios are required compared to incompressible flow experiments reported elsewhere. Overall, the results show a high sensitivity of steady VGJs control performance and optimum blowing ratio to compressibility and surface roughness.

Author(s):  
Chiara Bernardini ◽  
Stuart I. Benton ◽  
John D. Lee ◽  
Jeffrey P. Bons ◽  
Jen-Ping Chen ◽  
...  

A new high-speed linear cascade has been developed for low-pressure turbine (LPT) studies at The Ohio State University. A compressible LPT profile is tested in the facility and its baseline performance at different operating conditions is assessed by means of isentropic Mach number distribution and wake total pressure losses. Active flow control is implemented through a spanwise row of vortex-generator jets (VGJs) located at 60% chord on the suction surface. The purpose of the study is to document the effectiveness of VGJ flow control in high-speed compressible flow. The effect on shock-induced separation is assessed by Mach number distribution, wake loss surveys and shadowgraph. Pressure Sensitive Paint is applied to understand the three dimensional flow and shock pattern developing from the interaction of the skewed jets and the main flow. Data show that with increasing blowing ratio the losses are first decreased due to separation reduction, but losses connected to compressibility effects become stronger due to increased passage shock strength and jet orifice choking; therefore the optimum blowing ratio is a tradeoff between these counteracting effects. The effect of added surface roughness on the uncontrolled flow and on flow control behavior is also investigated. At lower Mach number turbulent separation develops on the rough surface and a different flow control performance is observed. Steady VGJs appear to have control authority even on a turbulent separation but higher blowing ratios are required compared to incompressible flow experiments reported elsewhere. Overall, the results show a high sensitivity of steady VGJs control performance and optimum blowing ratio to compressibility and surface roughness.


Author(s):  
Mounir B. Ibrahim ◽  
Olga Kartuzova ◽  
Daniel J. Doucet ◽  
Ralph J. Volino

Seven different cases were examined experimentally and computationally to study LPT flow control using pulsed VGJs for the L1A airfoil. These cases represent a combination of variation in Reynolds number, Re (25,000, 50,000 and 100,000), based on the suction surface length and the nominal exit velocity from the cascade, blowing ratio, B (from 0.25 to 1), dimensionless frequency, F (from 0.035 to 0.56) and duty cycle, DC (10% and 50%). The data was obtained for the pressure distribution along the airfoil and downstream in the wake as well as for velocity profiles at six different stations downstream of the suction peak. The CFD was done with LES utilizing version 6.3.26 of the finite-volume code ANSYS Fluent. The CFD did provide further insight to better understand the physics of flow control. The comparison between CFD and experimental results for Cp, velocity profiles and Ψint is reasonable for all cases examined. Two of the cases examined did indicate that the higher DC could compensate for the lower F value. However, the effect of increasing the frequency appears to be stronger than increasing the DC value. The results from CFD using the Q-Criterion clearly illustrate how a separation bubble will persist at the lower frequency case (Case (2)) and the disturbances created from the jet flow do not have enough energy or time to travel further downstream to cause reattachment. On the other hand, the higher frequency case (Case (6)) did exhibit a penetration of the disturbance created by the jet into the separated region and caused reattachment, especially at the trailing edge. It appears that the jet was capable of breaking the large bubble into smaller ones with reattachment in between.


2012 ◽  
Vol 2012 ◽  
pp. 1-28 ◽  
Author(s):  
Phil Ligrani

The influences of a variety of different physical phenomena are described as they affect the aerodynamic performance of turbine airfoils in compressible, high-speed flows with either subsonic or transonic Mach number distributions. The presented experimental and numerically predicted results are from a series of investigations which have taken place over the past 32 years. Considered are (i) symmetric airfoils with no film cooling, (ii) symmetric airfoils with film cooling, (iii) cambered vanes with no film cooling, and (iv) cambered vanes with film cooling. When no film cooling is employed on the symmetric airfoils and cambered vanes, experimentally measured and numerically predicted variations of freestream turbulence intensity, surface roughness, exit Mach number, and airfoil camber are considered as they influence local and integrated total pressure losses, deficits of local kinetic energy, Mach number deficits, area-averaged loss coefficients, mass-averaged total pressure loss coefficients, omega loss coefficients, second law loss parameters, and distributions of integrated aerodynamic loss. Similar quantities are measured, and similar parameters are considered when film-cooling is employed on airfoil suction surfaces, along with film cooling density ratio, blowing ratio, Mach number ratio, hole orientation, hole shape, and number of rows of holes.


Author(s):  
Javad Sepahi-Younsi ◽  
Behzad Forouzi Feshalami ◽  
Seyed Reza Maadi ◽  
Mohammad Reza Soltani

The paper summarizes recent developments in boundary layer suction for high-speed air intakes. Bleed has been efficiently used in supersonic and hypersonic intakes for three primary reasons: to improve the performance of the intake, to reduce the starting Mach number of the intake, and to postpone the onset of buzz oscillations. A bleed system has many characteristics such as the bleed entrance and exit areas, bleed entrance slant angle and position, and bleed type (slot or porous and ram-scoop or flush). Each of these parameters has significant impacts on the intake performance and stability that have been reviewed in this study. In addition, the effectiveness of other flow control methods has been compared with the bleed method.


2006 ◽  
Vol 129 (2) ◽  
pp. 340-347 ◽  
Author(s):  
Maria Vera ◽  
Xue Feng Zhang ◽  
Howard Hodson ◽  
Neil Harvey

This paper presents the second part of an investigation of the combined effects of unsteadiness and surface roughness on an aft-loaded ultra-high-lift low-pressure turbine (LPT) profile at low Reynolds numbers. The investigation has been performed using low- and high-speed cascade facilities. The low- and high-speed profiles have been designed to have the same normalized isentropic Mach number distribution. The low-speed results have been presented in the first part (Zhang, Vera, Hodson, and Harvey, 2006, ASME J. Turbomach., 128, pp. 517–527). The current paper examines the effect of different surface finishes on an aft-loaded ultra-high-lift LPT profile at Mach and Reynolds numbers representative of LPT engine conditions. The surface roughness values are presented along with the profile losses under steady and unsteady inflow conditions. The results show that the use of a rough surface finish can be used to reduce the profile loss. In addition, the results show that the same quantitative values of losses are obtained at high- and low-speed flow conditions. The latter proves the validity of the low-speed approach for ultra-high-lift profiles for the case of an exit Mach number of the order of 0.64. Hot-wire measurements were carried out to explain the effect of the surface finish on the wake-induced transition mechanism.


Author(s):  
Qiang Zhang ◽  
Phillip M. Ligrani

The effects of surface roughness and freestream turbulence level on the aerodynamic performance of a turbine vane are experimentally investigated. Wake profiles are measured with three different freestream turbulence intensity levels (1.1%, 5.4% and 7.7%) at two different locations downstream of the test vane trailing edge (one and 0.25 axial chord lengths). Chord Reynolds number based on exit flow conditions is 0.9 × 106. The Mach number distribution and the test vane configuration both match arrangements employed in an industrial application. Four cambered vanes with different surface roughness levels are employed in this study. Effects of surface roughness on the vane pressure side on the profile losses are relatively small compared with suction side roughness. Overall effects of turbulence on local wake deficits of total pressure, Mach number, and kinetic energy are almost negligible in most parts of the wake produced by the smooth test vane, except that higher freestream losses are present at higher turbulence intensity levels. Profiles produced by test vanes with rough surfaces show apparent lower peak values in the center of the wake. Integrated Aerodynamic Losses (IAL) and area-averaged loss coefficient YA are also presented and compared with results from other research groups.


Author(s):  
Huaping Liu ◽  
Deying Li ◽  
Bingxiao Lu ◽  
Menghan Yu

This paper presents a numerical investigation of secondary flow control in a high speed compressor cascade for different incoming flow incidences by means of endwall vortex generator jets (VGJs). The inlet Reynolds number is 560,000 in corresponding to an inlet Mach number of 0.67. Based on the detail analysis of the flow field and cascade performance, two effect mechanisms of the vortex induced by the VGJ are proposed. The first is to enhance the mixing between the endwall boundary layer and the mainstream. The second is to block the cross flow as an air obstacle. Therefore, the low energy fluids accumulation in the corner region could be decreased significantly, weakening the separation on the suction side and reducing the losses effectively. This benefit becomes more obvious with the increase of the incidence from i = −2° to 4°. Additionally, a more uniform flow angle as well as static pressure profile along the blade height is obtained at the cascade outlet. The maximum loss reduction is up to 12.9% while i = 4° with a jet mass flow ratio of 0.2%. However, the unfavorable impact of the VGJs is also detected in the up-washed region, where the loss is increased by the mixing processes between the mainstream fluids and the low energy fluids. For the case i = −4°, a strengthened induced vortex is generated due to the increased angle between the jet and incoming flow, resulting in loss increase in the up-washed region. Besides, a more rapid corner boundary layer development appears in the rear part of the passage, contributing to severe separation and loss enhancement, which suggests that the VGJ should be switched off for this incidence. Therefore, the advice to the application of the VGJ according the incidence is further obtained.


1993 ◽  
Vol 41 (5) ◽  
pp. 707-720 ◽  
Author(s):  
B.T. Doshi ◽  
P.K. Johri ◽  
A.N. Netravali ◽  
K.K. Sabnani

2006 ◽  
Vol 128 (3) ◽  
pp. 536-546 ◽  
Author(s):  
Qiang Zhang ◽  
Phillip M. Ligrani

The effects of surface roughness and freestream turbulence level on the aerodynamic performance of a turbine vane are experimentally investigated. Wake profiles are measured with three different freestream turbulence intensity levels (1.1%, 5.4%, and 7.7%) at two different locations downstream of the test vane trailing edge (1 and 0.25 axial chord lengths). Chord Reynolds number based on exit flow conditions is 0.9×106. The Mach number distribution and the test vane configuration both match arrangements employed in an industrial application. Four combered vanes with different surface roughness levels are employed in this study. Effects of surface roughness on the vane pressure side on the profile losses are relatively small compared to suction side roughness. Overall effects of turbulence on local wake deficits of total pressure, Mach number, and kinetic energy are almost negligible in most parts of the wake produced by the smooth test vane, except that higher freestream losses are present at higher turbulence intensity levels. Profiles produced by test vanes with rough surfaces show apparent lower peak values in the center of the wake. Integrated aerodynamic losses and area-averaged loss coefficient YA are also presented and compared to results from other research groups.


Author(s):  
Maria Vera ◽  
Xue Feng Zhang ◽  
Howard Hodson ◽  
Neil Harvey

This paper presents the second part of an investigation of the combined effects of unsteadiness and surface roughness on an aft-loaded ultra high lift low pressure turbine (LPT) profile at low Reynolds numbers. The investigation has been performed using low-speed and high-speed cascade facilities. The low speed and the high speed profiles have been designed to have the same normalized isentropic Mach number distribution. The low speed results have been presented in Part 1 of this paper. The current paper examines the effect of different surface finishes on an aft-loaded ultra-high-lift LPT profile at Mach and Reynolds numbers representative of LPT engine conditions. The surface roughness values are presented along with the profile losses under steady and unsteady inflow conditions. The results show that the use of a rough surface finish might reduce the profile loss. In addition, the results show that the same quantitative values of losses are obtained at high and low speed flow conditions. The latter proves the validity of the low speed approach for ultra high lift profiles for the case of an exit Mach number of the order of 0.64. Hot wire measurements were carried out to explain the effect of the surface finish on the wake induced transition mechanism.


Sign in / Sign up

Export Citation Format

Share Document