Effect of Pad Flexibility on the Performance of Tilting Pad Journal Bearings—Benchmarking a Predictive Model

Author(s):  
Luis San Andrés ◽  
Yingkun Li

Tilting pad journal bearings (TPJBs) supporting high-performance turbomachinery rotors have undergone steady design improvements to satisfy ever stringent operating conditions that include large specific loads, due to smaller footprints, and high surface speeds that promote flow turbulence and hence larger drag power losses. Simultaneously, predictive models continuously evolve to include minute details on bearing geometry, pads and pivots' configurations, oil delivery systems, etc. In general, predicted TPJB rotordynamic force coefficients correlate well with experimental data for operation with small to moderately large unit loads (1.7 MPa). Experiments also demonstrate bearing dynamic stiffnesses are frequency dependent, best fitted with a stiffness-mass like model whereas damping coefficients are adequately represented as of viscous type. However, for operation with large specific loads (>1.7 MPa), poor correlation of predictions to measured force coefficients is common. Recently, an experimental effort (Gaines, J., 2014, “Examining the Impact of Pad Flexibility on the Rotordynamic Coefficients of Rocker-Pivot-Pad Tiling-Pad Journal Bearings,” M.S. thesis, Mechanical Engineering, Texas A&M University, College Station, TX) produced test data for three TPJB sets, each having three pads of unequal thickness, to quantify the effect of pad flexibility on the bearings' force coefficients, in particular damping, over a range of load and rotational speed conditions. This paper introduces a fluid film flow model accounting for both pivot and pad flexibility to predict the bearing journal eccentricity, drag power loss, lubricant temperature rise, and force coefficients of typical TPJBs. A finite element (FE) pad structural model including the Babbitt layer is coupled to the thin film flow model to determine the mechanical deformation of the pad surface. Predictions correlate favorably with test data, also demonstrating that pad flexibility produces a reduction of up to 34% in damping for the bearing with the thinnest pads relative to that with the thickest pads. A parametric study follows to quantify the influence of pad thickness on the rotordynamic force coefficients of a sample TPJB with three pads of increasing preload, r¯p  = 0, 0.25 (baseline) and 0.5. The bearing pads are either rigid or flexible by varying their thickness. For design considerations, dimensionless static and dynamic characteristics of the bearings are presented versus the Sommerfeld number (S). Pad flexibility shows a more pronounced effect on the journal eccentricity and the force coefficients of a TPJB with null pad preload than for the bearings with larger pad preloads (0.25 and 0.5), in particular for operation with a small load or at a high surface speed (S > 0.8).

Author(s):  
Luis San Andrés ◽  
Yingkun Li

Tilting pad journal bearings (TPJBs) supporting high performance turbomachinery rotors have undergone steady design improvements to satisfy ever stringent operating conditions that include large specific loads due to smaller footprints, and high surface speeds that promote flow turbulence and thus larger drag power losses. Simultaneously, predictive models continuously evolve to include minute details on bearing geometry, pads and pivots’ configurations, oil delivery systems, etc. In general, predicted TPJB rotordynamic force coefficients correlate well with experimental data for operation with small to moderately large unit loads (1.7 MPa). Experiments also demonstrate bearing dynamic stiffnesses are frequency dependent, best fitted with a stiffness-mass like model whereas damping coefficients are adequately represented as of viscous type. However, for operation with large specific loads (> 1.7 MPa), poor correlation of predictions to measured force coefficients is common. Recently, an experimental effort [1] produced test data for three TPJB sets, each having three pads of unequal thickness, to quantify the effect of pad flexibility on the bearings’ force coefficients, in particular damping, over a range of load and rotational speed conditions. This paper introduces a fluid film flow model accounting for both pivot and pad flexibility to predict the bearing journal eccentricity, drag power loss, lubricant temperature rise and force coefficients of typical TPJBs. A finite element pad structural model including the Babbitt layer is coupled to the thin film flow model to determine the mechanical deformation of the pad surface. Predictions correlate favorably with test data, also demonstrating that pad flexibility produces a reduction of up to 34% in damping for the bearing with the thinnest pads relative to that with the thickest pads. A parametric study follows to quantify the influence of pad thickness on the rotordynamic force coefficients of a sample TPJB with three pads of increasing preload, rp = 0, 0.25 (baseline) and 0.5. The bearing pads are either rigid or flexible by varying their thickness. For design considerations, dimensionless static and dynamic characteristics of the bearings are presented versus the Sommerfeld number (S). Pad flexibility shows a more pronounced effect on the journal eccentricity and the force coefficients of a TPJB with null pad preload than for the bearings with larger pad preloads (0.25 and 0.5), in particular for operation with a small load or at a high surface speed (S>0.8).


Author(s):  
Thomas Hagemann ◽  
Hubert Schwarze

Flooded lubrication of tilting-pad journal bearings provides safe and robust operation for many applications due to a completely filled gap at the leading edge of each pad. While flooded conditions can be ensured by restrictive seals on the lateral bearing ends for any conventional bearing design, direct lubrication by leading edge grooves (LEG) placed on the pads represents an alternative to produce completely filled gaps at the entrance to the convergent lubricant film. Moreover, this design is flexible to apply different axial sealing baffles in order to influence the thermal equilibrium within the entire bearing. A theoretical model is presented that describes the specific influences of LEG design on the operating characteristics. First, in opposite to conventional tilting-pad journal bearing designs the LEG is a self-contained lube oil pocket which is generally connected to an outer annular oil supply channel. Consequently, each leading edge groove can feature a specific speed and load dependent effective pocket pressure and flow rate. As a consequence of this and the fact that the LEG is part of the pad, it directly influences its tilting angle. Secondly, the thermal inlet mixing model must consider the specific flow conditions depending on the main flow direction within the film as well as the one between outer annular channel and pocket. The novel LEG model is integrated into a comprehensive bearing code validated earlier for other bearing designs. The code is based on an extended Reynolds equation and a three-dimensional energy equation. The entire theoretical model is validated with test data from high performance journal bearing test rig for a four tilting-pad bearing in load between pivot orientation. The bearing is described by the following specifications: 0.5 nominal preload, 60% offset, 70° pad arc angle, 120 mm inner diameter, 72 mm pad length and 1.7 per mille relative bearing clearance. Measurements are conducted for rotational speeds between 4000 and 15000 rpm and specific bearing loads between 0.5 and 2.5 MPa. Within the investigated operating range good agreement between theoretical and experimental data is achieved if all boundary conditions are accurately considered. Additionally, the impact of single simplifications within the model are studied and evaluated. Finally, the test data is compared to results from the same test bearing with modified lubricant oil supply conditions in order to identify specific properties of LEG design. Here, the leading groove edge elements are replaced by conventional spray-bars. It is shown that an assessment of the comparison depends on the definition of reference conditions as the bearings require different oil flow rates for nominal operation due to their design.


1998 ◽  
Vol 120 (2) ◽  
pp. 405-409 ◽  
Author(s):  
P. Monmousseau ◽  
M. Fillon ◽  
J. Freˆne

Nowadays, tilting-pad journal bearings are submitted to more and more severe operating conditions. The aim of this work is to study the thermal and mechanical behavior of the bearing during the transient period from an initial steady state to a final steady state (periodic). In order to study the behavior of this kind of bearing under dynamic loading (Fdyn) due to a blade loss, a nonlinear analysis, including local thermal effects, realistic boundary conditions, and bearing solid deformations (TEHD analysis) is realized. After a comparison between theoretical results obtained with four models (ISO, ADI, THD, and TEHD) and experimental data under steady-state operating conditions (static load Ws), the evolution of the main characteristics for three different cases of the dynamic load (Fdyn/Ws < 1, Fdyn/Ws = 1 and Fdyn//Ws > 1) is discussed. The influence of the transient period on the minimum film thickness, the maximum pressure, the maximum temperature, and the shaft orbit is presented. The final steady state is obtained a long time after the appearance of a dynamic load.


Author(s):  
Luis San Andrés ◽  
Adolfo Delgado

Oil seals in centrifugal compressors reduce leakage of the process gas into the support bearings and ambient. Under certain operating conditions of speed and pressure, oil seals lock, becoming a source of hydrodynamic instability due to excessively large cross coupled stiffness coefficients. It is a common practice to machine circumferential grooves, breaking the seal land, to isolate shear flow induced film pressures in contiguous lands, and hence reducing the seal cross coupled stiffnesses. Published tests results for oil seal rings shows that an inner land groove, shallow or deep, does not actually reduce the cross-stiffnesses as much as conventional models predict. In addition, the tested grooved oil seals evidenced large added mass coefficients while predictive models, based on classical lubrication theory, neglect fluid inertia effects. This paper introduces a bulk-flow model for groove oil seals operating eccentrically and its solution via the finite element (FE) method. The analysis relies on an effective groove depth, different from the physical depth, which delimits the upper boundary for the squeeze film flow. Predictions of rotordynamic force coefficients are compared to published experimental force coefficients for a smooth land seal and a seal with a single inner groove with depth equaling 15 times the land clearance. The test data represent operation at 10 krpm and 70 bar supply pressure, and four journal eccentricity ratios (e/c= 0, 0.3, 0.5, 0.7). Predictions from the current model agree with the test data for operation at the lowest eccentricities (e/c= 0.3) with discrepancies increasing at larger journal eccentricities. The new flow model is a significant improvement towards the accurate estimation of grooved seal cross-coupled stiffnesses and added mass coefficients; the latter was previously ignored or largely under predicted.


2006 ◽  
Vol 129 (3) ◽  
pp. 865-869 ◽  
Author(s):  
Waldemar Dmochowski

Tilting-pad journal bearings (TPJBs) dominate as rotor supports in high-speed rotating machinery. The paper analyzes frequency effects on the TPJB’s stiffness and damping characteristics based on experimental and theoretical investigations. The experimental investigation has been carried out on a five pad tilting-pad journal bearing of 98mm in diameter. Time domain and multifrequency excitation has been used to evaluate the dynamic coefficients. The calculated results have been obtained from a three-dimensional computer model of TPJB, which accounts for thermal effects, turbulent oil flow, and elastic effects, including that of pad flexibility. The analyzes of the TPJB’s stiffness and damping properties showed that the frequency effects on the bearing dynamic properties depend on the operating conditions and bearing design. It has been concluded that the pad inertia and pivot flexibility are behind the variations of the stiffness and damping properties with frequency of excitation.


Author(s):  
Steven Chatterton ◽  
Filippo Cangioli ◽  
Paolo Pennacchi ◽  
Andrea Vania ◽  
Phuoc Vinh Dang

The current design trend of rotating machines like turbo-generators, compressors, turbines, and pumps is focused on obtaining both high dynamic performances and high versatility of machines in different operating conditions. The first target is nowadays achieved by equipping machines with tilting pad journal bearings. For the second target, State-of-the-Art researches are focused on the development of active systems able to adapt the dynamic behavior of the machine to the external environment and new operating conditions. Typical causes of large vibration in rotating machines are faults, residual unbalance, resonance condition and instabilities. Aiming at vibration reduction, in recent years many studies are carried out to investigate different solutions; one of them is based on active tilting pad journal bearing. In this paper, the authors investigate, by simulations, the reduction of shaft vibration by controlling the motion of the pads of a tilting pad journal bearing. The basic idea is to balance the exciting force on the shaft with a suitable resulting force of the oil-film pressure distribution. In particular, a sliding mode controller has been considered and both angular rotation of the pads about the pivot and the radial motion of the pivot have been analyzed. Sliding mode control guarantees high robustness of the control system in real applications that can be characterized by a strong non-linear behavior. In the paper a general consideration about the bearing, the actuating methods and the control system have been provided. A numerical analysis of large size rotor equipped with active pads has been carried out in order to verify the effectiveness of the system in several conditions, even during the most critical operating phase, i.e. the lateral critical speed.


Author(s):  
Luis San Andrés ◽  
Yujiao Tao

Recent comprehensive experimental data showcasing the force coefficients of commercial size tilting pad journal bearings has brought to rest the long standing issue on the adequacy of the [K,C,M] physical model to represent frequency independent bearing force coefficients, in particular viscous damping. Most experimental works test tilting pad journal bearings (TPJBs) with large preloads, operating over a large wide range of rotor speeds, and with null to beyond normal specific loads. Predictions from apparently simple fluid film bearing models stand poor against the test data which invariably signals to theory missing pivot and pad flexibility effects, and most importantly, ignoring significant differences in bearing and pad clearances due to actual operation, poor installation and test procedures, or simply errors in manufacturing and assembly. Presently, a conventional thermo hydrodynamic bulk flow model for prediction of the pressure and temperature fields in TPJBs is detailed. The model accounts for various pivot stiffness types, all load dependent and best when known empirically, and allows for dissimilar pad and bearing clearances. The algorithm, reliable even for very soft pad-pivots, predicts frequency reduced bearing impedance coefficients and over a certain frequency range delivers the bearing stiffness, damping and virtual mass force coefficients. Good correlation of predictions against a number of experimental results available in the literature bridges the gap between a theoretical model and the applications. Predicted pad reaction loads reveal large pivot deflections, in particular for a bearing with large preloaded pads, with significant differences in pivot stiffness as a function of specific load and operating speed. The question on how pivot stiffness acts to increase (or decrease) the bearing force coefficients, in particular the dynamic stiffness versus frequency, remains since the various experimental data show contradictory results. A predictive study with one of the test bearings varies its pivot stiffness from 10% of the fluid film stiffness to an almost rigid one, 100 times larger. With certainty, bearings with nearly rigid pivot stiffness show frequency independent force coefficients. However, for a range of pad pivot stiffness, 1/10 to ten times the fluid film stiffness, TPJB impedances vary dramatically with frequency, in particular as the excitation frequency grows above synchronous speed. The bearing virtual mass coefficients become negative, thus stiffening the bearing for most excitation frequencies.


1992 ◽  
Vol 114 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Michel Fillon ◽  
Jean-Claude Bligoud ◽  
Jean Freˆne

Operating characteristics of four-shoe tilting-pad journal bearings of 100 mm diameter and 70 mm length are determined on an experimental device. The load, between pad configuration, varies from 0 to 10,000 N and the rotational speed is up to 4000 rpm. Forty thermocouples are used in order to measure bearing element temperatures (babbitt, shaft, housing and oil baths). The influence of operating conditions and preload ratio on bearing performances are studied. Comparison between theoretical and experimental results is presented. The theoretical model is also performed on a large tilting-pad journal bearing which was investigated experimentally by other authors.


Author(s):  
Luis San Andrés ◽  
Bonjin Koo ◽  
Makoto Hemmi

Direct lubrication tilting pad journal bearings (TPJBs) require less oil flow, reduce power consumption, and offer cooler pad temperatures for operation at high surface speeds. Although apparently free of hydrodynamic instability, the literature shows that direct lubrication TPJBs exhibit unexpected shaft vibrations with a broadband low frequency range, albeit small in amplitude. Published industrial practice demonstrates the inlet lubrication type, a reduced supply flow rate causing film starvation, and the bearing discharge conditions (evacuated or end sealed) affect the onset, gravity, and persistency of the subsynchronous vibration (SSV) hash motions. The paper presents a physical model to predict the performance of TPJBs with flow conditions ranging from over flooded to extreme starvation. Lubricant starvation occurs first on an unloaded pad, thus producing a (beneficial) reduction in drag power. As the supplied flowrate decreases further, fluid starvation moves toward the loaded pads and affects the film temperature and power loss, increases the journal eccentricity, and modifies the dynamic force coefficients of each tilting pad and thus the whole bearing. For a point mass rotor supported on a TPJB, the analysis produces eigenvalues and frequency response functions (FRFs) from three physical models for lateral rotor displacements: one with frequency reduced (4 × 4) bearing stiffness (K) and damping (C) coefficients and another with constant K–C–M (inertia) coefficients over a frequency range. The third model keeps the degrees of freedom (DOF) (tilting) of each pad and incorporates the full matrices of force coefficients including fluid inertia. Predictions of rotordynamic performance follow for two TPJBs: one bearing with load between pads (LBP) configuration, and the other with a load on a pad (LOP) configuration. For both examples, under increasingly poor lubricant flow conditions, the damping ratio for the rotor-bearing low frequency (SSV) modes decreases, thus producing an increase in the amplitude of the FRFs. For the LOP bearing, a large static load produces a significant asymmetry in the force coefficients; the rotor bearing has a small stiffness and damping for shaft displacements in the direction orthogonal to the load. A reduction in lubricant flow only exacerbates the phenomenon; starvation reaches the loaded pad to eventually cause the onset of low frequency (SSV) instability. The bearing analyzed showed similar behavior in a test bench. The predictions thus show a direct correlation between lubricant flow starvation and the onset of SSV.


Sign in / Sign up

Export Citation Format

Share Document