Measured Performance of Tilting-Pad Journal Bearings over a Range of Preloads—Part I: Static Operating Conditions

2004 ◽  
Vol 47 (4) ◽  
pp. 576-584 ◽  
Author(s):  
Karl D. Wygant ◽  
Ronald D. Flack ◽  
Lloyd E. Barrett
1998 ◽  
Vol 120 (2) ◽  
pp. 405-409 ◽  
Author(s):  
P. Monmousseau ◽  
M. Fillon ◽  
J. Freˆne

Nowadays, tilting-pad journal bearings are submitted to more and more severe operating conditions. The aim of this work is to study the thermal and mechanical behavior of the bearing during the transient period from an initial steady state to a final steady state (periodic). In order to study the behavior of this kind of bearing under dynamic loading (Fdyn) due to a blade loss, a nonlinear analysis, including local thermal effects, realistic boundary conditions, and bearing solid deformations (TEHD analysis) is realized. After a comparison between theoretical results obtained with four models (ISO, ADI, THD, and TEHD) and experimental data under steady-state operating conditions (static load Ws), the evolution of the main characteristics for three different cases of the dynamic load (Fdyn/Ws < 1, Fdyn/Ws = 1 and Fdyn//Ws > 1) is discussed. The influence of the transient period on the minimum film thickness, the maximum pressure, the maximum temperature, and the shaft orbit is presented. The final steady state is obtained a long time after the appearance of a dynamic load.


Author(s):  
Luis San Andrés ◽  
Yingkun Li

Tilting pad journal bearings (TPJBs) supporting high-performance turbomachinery rotors have undergone steady design improvements to satisfy ever stringent operating conditions that include large specific loads, due to smaller footprints, and high surface speeds that promote flow turbulence and hence larger drag power losses. Simultaneously, predictive models continuously evolve to include minute details on bearing geometry, pads and pivots' configurations, oil delivery systems, etc. In general, predicted TPJB rotordynamic force coefficients correlate well with experimental data for operation with small to moderately large unit loads (1.7 MPa). Experiments also demonstrate bearing dynamic stiffnesses are frequency dependent, best fitted with a stiffness-mass like model whereas damping coefficients are adequately represented as of viscous type. However, for operation with large specific loads (>1.7 MPa), poor correlation of predictions to measured force coefficients is common. Recently, an experimental effort (Gaines, J., 2014, “Examining the Impact of Pad Flexibility on the Rotordynamic Coefficients of Rocker-Pivot-Pad Tiling-Pad Journal Bearings,” M.S. thesis, Mechanical Engineering, Texas A&M University, College Station, TX) produced test data for three TPJB sets, each having three pads of unequal thickness, to quantify the effect of pad flexibility on the bearings' force coefficients, in particular damping, over a range of load and rotational speed conditions. This paper introduces a fluid film flow model accounting for both pivot and pad flexibility to predict the bearing journal eccentricity, drag power loss, lubricant temperature rise, and force coefficients of typical TPJBs. A finite element (FE) pad structural model including the Babbitt layer is coupled to the thin film flow model to determine the mechanical deformation of the pad surface. Predictions correlate favorably with test data, also demonstrating that pad flexibility produces a reduction of up to 34% in damping for the bearing with the thinnest pads relative to that with the thickest pads. A parametric study follows to quantify the influence of pad thickness on the rotordynamic force coefficients of a sample TPJB with three pads of increasing preload, r¯p  = 0, 0.25 (baseline) and 0.5. The bearing pads are either rigid or flexible by varying their thickness. For design considerations, dimensionless static and dynamic characteristics of the bearings are presented versus the Sommerfeld number (S). Pad flexibility shows a more pronounced effect on the journal eccentricity and the force coefficients of a TPJB with null pad preload than for the bearings with larger pad preloads (0.25 and 0.5), in particular for operation with a small load or at a high surface speed (S > 0.8).


2006 ◽  
Vol 129 (3) ◽  
pp. 865-869 ◽  
Author(s):  
Waldemar Dmochowski

Tilting-pad journal bearings (TPJBs) dominate as rotor supports in high-speed rotating machinery. The paper analyzes frequency effects on the TPJB’s stiffness and damping characteristics based on experimental and theoretical investigations. The experimental investigation has been carried out on a five pad tilting-pad journal bearing of 98mm in diameter. Time domain and multifrequency excitation has been used to evaluate the dynamic coefficients. The calculated results have been obtained from a three-dimensional computer model of TPJB, which accounts for thermal effects, turbulent oil flow, and elastic effects, including that of pad flexibility. The analyzes of the TPJB’s stiffness and damping properties showed that the frequency effects on the bearing dynamic properties depend on the operating conditions and bearing design. It has been concluded that the pad inertia and pivot flexibility are behind the variations of the stiffness and damping properties with frequency of excitation.


Author(s):  
Steven Chatterton ◽  
Filippo Cangioli ◽  
Paolo Pennacchi ◽  
Andrea Vania ◽  
Phuoc Vinh Dang

The current design trend of rotating machines like turbo-generators, compressors, turbines, and pumps is focused on obtaining both high dynamic performances and high versatility of machines in different operating conditions. The first target is nowadays achieved by equipping machines with tilting pad journal bearings. For the second target, State-of-the-Art researches are focused on the development of active systems able to adapt the dynamic behavior of the machine to the external environment and new operating conditions. Typical causes of large vibration in rotating machines are faults, residual unbalance, resonance condition and instabilities. Aiming at vibration reduction, in recent years many studies are carried out to investigate different solutions; one of them is based on active tilting pad journal bearing. In this paper, the authors investigate, by simulations, the reduction of shaft vibration by controlling the motion of the pads of a tilting pad journal bearing. The basic idea is to balance the exciting force on the shaft with a suitable resulting force of the oil-film pressure distribution. In particular, a sliding mode controller has been considered and both angular rotation of the pads about the pivot and the radial motion of the pivot have been analyzed. Sliding mode control guarantees high robustness of the control system in real applications that can be characterized by a strong non-linear behavior. In the paper a general consideration about the bearing, the actuating methods and the control system have been provided. A numerical analysis of large size rotor equipped with active pads has been carried out in order to verify the effectiveness of the system in several conditions, even during the most critical operating phase, i.e. the lateral critical speed.


1992 ◽  
Vol 114 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Michel Fillon ◽  
Jean-Claude Bligoud ◽  
Jean Freˆne

Operating characteristics of four-shoe tilting-pad journal bearings of 100 mm diameter and 70 mm length are determined on an experimental device. The load, between pad configuration, varies from 0 to 10,000 N and the rotational speed is up to 4000 rpm. Forty thermocouples are used in order to measure bearing element temperatures (babbitt, shaft, housing and oil baths). The influence of operating conditions and preload ratio on bearing performances are studied. Comparison between theoretical and experimental results is presented. The theoretical model is also performed on a large tilting-pad journal bearing which was investigated experimentally by other authors.


1999 ◽  
Vol 5 (3) ◽  
pp. 181-191 ◽  
Author(s):  
Renato Brancati ◽  
Stefano Pagano ◽  
Ernesto Rocca ◽  
Michele Russo ◽  
Riccardo Russo

The results of a survey conducted on an experimental system consisting of a rigid rotor supported on two radial bearings each with five tilting pads is presented. In particular, the system was set up in order to assess the dynamic behaviour of the bearing in unusual operating conditions. The response of the bearing to different unbalance values was determined after acquiring and analysing the orbits described by the journal axis for assigned unbalance values in different operating conditions. Analysis of the results shows some particular operating features that were not entirely predicted by the theoretical model and which may give rise to malfunctions in the rotor-tilting pad bearings system. The tests were carried out in the rotor dynamics laboratory of the Dipartimento di Ingegneria Meccanica per l'Energetica at the University of Naples.


1981 ◽  
Vol 23 (3) ◽  
pp. 131-141
Author(s):  
M. Malik ◽  
R. Sinhasan ◽  
D. V. Singh

The rolling-pad journal bearing is a kinematic variation of the well-known tilting-pad journal bearing. In rolling-pad bearings, the pads, instead of tilting about fixed pivots, roll at their back surfaces on the inside surface of a common sleeve to accommodate changes in the operating conditions of the bearing. This paper presents a comparison of the theoretical performance characteristics of rolling-pad journal bearings with those of tilting-pad journal bearings. The comparative study indicates that the dynamic performance characteristics of the rolling-pad bearing configuration are superior to those of the tilting-pad bearing.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Andres Clarens ◽  
Amir Younan ◽  
Shibo Wang ◽  
Paul Allaire

Lubricants are necessary in tilting-pad journal bearings to ensure separation between solid surfaces and to dissipate heat. They are also responsible for much of the undesirable power losses that can occur through a bearing. Here, a novel method to reduce power losses in tilting-pad journal bearings is proposed in which the conventional lubricant is substituted by a binary mixture of synthetic lubricant and dissolved CO2. These gas-expanded lubricants (GELs) would be delivered to a reinforced bearing housing capable of withstanding modest pressures less than 10 MPa. For bearings subject to loads that are both variable and predictable, GELs could be used to adjust lubricant properties in real time. High-pressure lubricants, mostly gases, have already been explored in tilting-pad journal bearings as a means to accommodate higher shaft speeds while reducing power losses and eliminating the potential for thermal degradation of the lubricant. These gas-lubricated bearings have intrinsic limitations in terms of bearing size and load capacity. The proposed system would combine the loading capabilities of conventional lubricated bearings with the efficiency of gas-lubricated bearings. The liquid or supercritical CO2 serves as a low-viscosity and completely miscible additive to the lubricant that can be easily removed by purging the gas after releasing the pressure. In this way, the lubricant can be fully recycled, as in conventional systems, while controlling the lubricant properties dynamically by adding liquid or supercritical CO2. Lubricant properties of interest, such as viscosity, can be easily tuned by controlling the pressure inside the bearing housing. Experimental measurements of viscosity for mixtures of polyalkylene glycol (PAG)+CO2 at various compositions demonstrate that significant reductions in mixture viscosity can be achieved with relatively small additions of CO2. The measured parameters are used in a thermoelastohydrodynamic model of tilting-pad journal bearing performance to evaluate the bearing response to GELs. Model estimates of power loss, eccentricity ratio, and pad temperature suggest that bearings would respond quite favorably over a range of speed and preload conditions. Calculated power loss reductions of 20% are observed when compared with both a reference petroleum lubricant and PAG without CO2. Pad temperature is also maintained without significant increases in eccentricity ratio. Both power loss and pad temperature are directly correlated with PAG-CO2 composition, suggesting that these mixtures could be used as “smart” lubricants responsive to system operating conditions.


Author(s):  
Waldemar Dmochowski

Tilting-pad journal bearings (TPJB) dominate as rotor supports in high speed rotating machinery. The paper analyzes frequency effects on the TPJB’s stiffness and damping characteristics based on experimental and theoretical investigations. The experimental investigation has been carried out on a five pad tilting-pad journal bearing of 98 mm in diameter. Time domain and multifrequency excitation has been used to evaluate the dynamic coefficients. The calculated results have been obtained from a three-dimensional computer model of TPJB, which accounts for thermal effects, turbulent oil flow, and elastic effects, including that of pad flexibility. The analyzes of the TPJB’s stiffness and damping properties showed that the frequency effects on the bearing dynamic properties depend on the operating conditions and bearing design. It has been concluded that the pad inertia and pivot flexibility are behind the variations of the stiffness and damping properties with frequency of excitation.


Author(s):  
Laurence F. Wagner

Abstract Controversy regarding the dynamic modeling of tilting-pad journal bearings (TPJB) has existed for years, with the question of the effective stiffness and damping properties, and the requirement for consideration of frequency dependency, being of great concern. There is a partial disconnect between the results of theoretical and many experimental investigations. This paper attempts to examine this issue in more of a macro sense; broadening the scope of the geometric and operating domains, and in turn expanding an understanding of related frequency effects. The investigation hinges on a single-pad, single degree-of-freedom (DOF) model that represents various geometries and operating conditions for a full bearing. The results clearly show that the dynamic coefficients must be dependent upon the “exciting” frequency, and that the dependency is primarily associated with the pad rotational damping.


Sign in / Sign up

Export Citation Format

Share Document