A Shape Memory Alloy-Based Morphing Axial Fan Blade—Part II: Blade Shape and Computational Fluid Dynamics Analyses

Author(s):  
Alessio Suman ◽  
Annalisa Fortini ◽  
Nicola Aldi ◽  
Mattia Merlin ◽  
Michele Pinelli

The ability of a morphing blade to change its geometry according to the different operating conditions represents a challenging approach for the optimization of turbomachinery performance. In this paper, experimental and computational fluid dynamics (CFD) numerical analyses on a morphing blade for a heavy-duty automotive cooling axial fan are proposed. Starting from the experimental results proposed in the first part of this work, a morphing blade, made of shape memory alloy (SMA) strips embedded in a polymeric structure, was thoroughly tested. In order to assess the ability of the strips to reach a progressive and smooth shape changing evolution, several experiments were performed in a purpose-built wind tunnel. The morphing blade changed its shape as the strips were thermally activated by means of air stream flow. The bending deformation evolution with the increasing number of thermal cycles was evaluated by digital image analysis techniques. After the analyses in the wind tunnel, CFD numerical simulations of a partially shrouded fan composed of five morphing blades were performed in order to highlight the evolution of the fan performance according to air temperature conditions. In particular, the capability of the blade activation was evaluated by the comparison between the fan performance with nonactivated blades and with activated blades. The results show a progressive stabilization of the shape memory behavior after the first cycle. The blade deformation led to a significant improvement in the fan performance at a constant rotational velocity. The CFD numerical simulation points out the differences in the overall performance and of three-dimensional fluid dynamic behavior of the fan. This innovative concept is aimed at realizing a sensorless smart fan control, permitting (i) an energy saving that leads to fuel saving in the automotive application fields and (ii) an increase in engine life, thanks to a strong relationship between the engine thermal request and the cooling fan performance.

Author(s):  
Alessio Suman ◽  
Annalisa Fortini ◽  
Nicola Aldi ◽  
Mattia Merlin ◽  
Michele Pinelli

The ability of a morphing blade to change its geometry according to the different operating conditions represents a challenging approach for the optimization of turbomachinery performance. In this paper experimental and CFD numerical analyses on a morphing blade for a heavy-duty automotive cooling axial fan are proposed. Starting from the experimental results proposed in the first part of this work, a morphing blade, made of Shape Memory Alloy (SMA) strips embedded in a polymeric structure, was thoroughly tested. In order to assess the ability of the strips to reach a progressive and smooth shape changing evolution, several experiments were performed in a purpose-built wind tunnel. The morphing blade changed its shape as the strips were thermally activated by means of air stream flow. The bending deformation evolution with the increasing number of thermal cycles was evaluated by digital image analysis techniques. After the analyses in the wind tunnel CFD numerical simulations of a partially shrouded fan composed of five morphing blades were performed in order to highlight the evolution of the fan performance according to air temperature conditions. In particular, the capability of the blade activation was evaluated by the comparison between the fan performance with non-activated blades and with activated blades. The results show a progressive stabilization of the shape memory behavior after the first cycle. The blade deformation led to a significant improvement in fan performance at a constant rotational velocity. The CFD numerical simulation points out the differences in the overall performance and of three-dimensional fluid dynamic behavior of the fan. This innovative concept is aimed at realizing a sensorless smart fan control, permitting (i) an energy saving that leads to fuel saving in the automotive application fields and (ii) an increase in engine life thanks to a strong relationship between the engine thermal request and the cooling fan performance.


Author(s):  
Alessio Suman ◽  
Annalisa Fortini ◽  
Nicola Aldi ◽  
Mattia Merlin ◽  
Michele Pinelli

In a traditional automotive cooling system, energy optimization could be achieved by controlling the engine temperature by means of several sensors placed inside the cooling circuit. Nevertheless, in some cases the increasing use of a great number of sensor devices makes the control system too bulky, expensive and not sufficiently robust for the intended application. This paper presents the development of a heavy-duty automotive cooling axial fan with morphing blades activated by Shape Memory Alloy (SMA) strips that work as actuator elements in the polymeric blade structure. The application of smart materials to compact, high-energy density devices as well as the development of modeling and control systems has been of great interest during the last decade. SMAs are frequently combined within monolithic or composite host materials to produce adaptive structures whose properties could be tuned in response to external stimuli. The blade was designed to achieve the activation of the strips (purposely thermo-mechanically treated) by means of an air stream flow. With the aim of studying the morphing capability of the adaptive structure together with the recovery behavior of the NiTi strips, four different polymeric compounds have been compared in a specifically-designed wind tunnel. Digital image analysis techniques have been performed to quantitatively analyze the blade deflections and to evaluate the most suitable polymeric matrix for the intended application. As the airstream flow increases in temperature, the strips recover the memorized bent shape, leading to a camber variation. To study the possibility of employing SMA strips as actuator elements, a comparison with common viscous clutch behavior is proposed. The time range actuator response indicates that the SMA strips provide a lower frequency control that fits well with the engine coolant thermal requirement. The experimental results demonstrate the capability of SMA materials to accommodate the lower power actuators in the automotive field. Finally, the blade tip airfoils, reconstructed using a CAD procedure, were used to study the fluid dynamic behavior of the blade tip airfoil. A CFD numerical simulation was carried out in order to highlight the differences in the airfoil performance due to the different shapes of the blade. The analyses showed that the activated blade tip airfoil led to an increase in the lift coefficient according to the stiffness provided by the polymeric compound. This innovative passive control system results from the selection of (i) the memorized shape of the SMA strips and (ii) the polymeric compound used for the blade structure.


2021 ◽  
Vol 11 (4) ◽  
pp. 1642
Author(s):  
Yuxiang Zhang ◽  
Philip Cardiff ◽  
Jennifer Keenahan

Engineers, architects, planners and designers must carefully consider the effects of wind in their work. Due to their slender and flexible nature, long-span bridges can often experience vibrations due to the wind, and so the careful analysis of wind effects is paramount. Traditionally, wind tunnel tests have been the preferred method of conducting bridge wind analysis. In recent times, owing to improved computational power, computational fluid dynamics simulations are coming to the fore as viable means of analysing wind effects on bridges. The focus of this paper is on long-span cable-supported bridges. Wind issues in long-span cable-supported bridges can include flutter, vortex-induced vibrations and rain–wind-induced vibrations. This paper presents a state-of-the-art review of research on the use of wind tunnel tests and computational fluid dynamics modelling of these wind issues on long-span bridges.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
C. I. Papadopoulos ◽  
L. Kaiktsis ◽  
M. Fillon

The paper presents a detailed computational study of flow patterns and performance indices in a dimpled parallel thrust bearing. The bearing consists of eight pads; the stator surface of each pad is partially textured with rectangular dimples, aiming at maximizing the load carrying capacity. The bearing tribological performance is characterized by means of computational fluid dynamics (CFD) simulations, based on the numerical solution of the Navier–Stokes and energy equations for incompressible flow. Realistic boundary conditions are implemented. The effects of operating conditions and texture design are studied for the case of isothermal flow. First, for a reference texture pattern, the effects of varying operating conditions, in particular minimum film thickness (thrust load), rotational speed and feeding oil pressure are investigated. Next, the effects of varying texture geometry characteristics, in particular texture zone circumferential/radial extent, dimple depth, and texture density on the bearing performance indices (load carrying capacity, friction torque, and friction coefficient) are studied, for a representative operating point. For the reference texture design, the effects of varying operating conditions are further investigated, by also taking into account thermal effects. In particular, adiabatic conditions and conjugate heat transfer at the bearing pad are considered. The results of the present study indicate that parallel thrust bearings textured by proper rectangular dimples are characterized by substantial load carrying capacity levels. Thermal effects may significantly reduce load capacity, especially in the range of high speeds and high loads. Based on the present results, favorable texture designs can be assessed.


2005 ◽  
Author(s):  
Vincent G. Chapin ◽  
Romaric Neyhousser ◽  
Stephane Jamme ◽  
Guillaume Dulliand ◽  
Patrick Chassaing

In this paper we propose a rational viscous Computational Fluid Dynamics (CFD) methodology applied to sailing yacht rig aerodynamic design and analysis. After an outlook of present challenges in high speed sailing, we emphasized the necessity of innovation and CFD to conceive, validate and optimize new aero-hydrodynamic concepts. Then, we present our CFD methodology through CAD, mesh generation, numerical and physical modelling choices, and their validation on typical rig configurations through wind-tunnel test comparisons. The methodology defined, we illustrate the relevance and wide potential of advanced numerical tools to investigate sailing yacht rig design questions like the relation between sail camber, propulsive force and aerodynamic finesse, and like the mast-mainsail non linear interaction. Through these examples, it is shown how sailing yacht rig improvements may be drawn by using viscous CFD based on Reynolds Averaged Navier-Stokes equations (RANS). Then the extensive use of viscous CFD, rather than wind-tunnel tests on scale models, for the evaluation or ranking of improved designs with increased time savings. Viscous CFD methodology is used on a preliminary study of the complex and largely unknown Yves Parlier Hydraplaneur double rig. We show how it is possible to increase our understanding of his flow physics with strong sail interactions, and we hope this methodology will open new roads toward optimized design. Throughout the paper, the necessary comparison between CFD and wind-tunnel test will be presented to focus on limitations and drawbacks of viscous CFD tools, and to address future improvements.


Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Antonio Andreini ◽  
Lorenzo Mazzei ◽  
Giovanni Riccio ◽  
...  

Combustor liner of present gas turbine engines is subjected to high thermal loads as it surrounds high temperature combustion reactants and is hence facing the related radiative load. This generally produces high thermal stress levels on the liner, strongly limiting its life expectations and making it one of the most critical components of the entire engine. The reliable prediction of such thermal loads is hence a crucial aspect to increase the flame tube life span and to ensure safe operations. The present study aims at investigating the aerothermal behavior of a GE Dry Low NOx (DLN1) class flame tube and in particular at evaluating working metal temperatures of the liner in relation to the flow and heat transfer state inside and outside the combustion chamber. Three different operating conditions have been accounted for (i.e., lean–lean partial load, premixed full load, and primary load) to determine the amount of heat transfer from the gas to the liner by means of computational fluid dynamics (CFD). The numerical predictions have been compared to experimental measurements of metal temperature showing a good agreement between CFD and experiments.


2016 ◽  
Vol 820 ◽  
pp. 359-364
Author(s):  
Marek Magát ◽  
Ivana Olekšáková ◽  
Juraj Žilinský

In this article are described the results from testing profile of atmospheric boundary layer in BLWT (Boundary layer wind tunnel) in Florence (Prato), Italy with emphasis on comparison of the results with simulations in CFD (Computational fluid dynamics) software OpenFoam. The values are compared with calculated values from EuroCode.


Sign in / Sign up

Export Citation Format

Share Document