Numerical Analysis on Heat-Transfer Deterioration of Supercritical Fluid in the Vertical Upward Tubes

Author(s):  
Xianliang Lei ◽  
Huixiong Li ◽  
Weiqiang Zhang

Heat-transfer characteristics are especially significant among all issues for the supercritical water-cooled reactors (SCWRs). The two-peak wall-temperature phenomenon that could be verified by Shitsman and Jackson’s experiments occurred in the regions of tb<tpc<tw for vertical upward flow under the extreme heating conditions or accident cases (i.e., q/G>0.6  kJ/kg for water). However, so far the special two-peak result has not been paid much attention due to the difficulty of the experiments. Hence, in this study, numerical analysis was carried out to investigate the characteristics of heat-transfer deterioration (HTD) two-peak phenomenon of supercritical pressure water/carbon dioxide in the conditions of high q/G. The results showed that the higher the heat fluxes were, the more temperature peaks might appear and more unstable flow might be presented. Finally, the mechanism of two-peak HTD was studied through quantitatively analyzing the distribution of flow parameters and thermophysical properties in the near-wall region.

2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Jeremy Licht ◽  
Mark Anderson ◽  
Michael Corradini

A series of integral heat transfer measurements in a square annular flow passage was performed for bulk water temperatures of 175–400°C with upward mass velocities of 300 kg/m2 s and 1000 kg/m2 s and heat fluxes of 0, 200 kW/m2, and 440 kW/m2, all at a pressure of 25 MPa. Mean and turbulent velocities measured with a two-component laser Doppler velocimetry system along with simulations using the computational fluid dynamics (CFD) code FLUENT were used to explain the deterioration and enhancement of heat transfer in supercritical pressure water. At low mass velocities, the integral heat transfer measurements exhibited large localized wall temperature spikes that could not be accurately predicted with Nusselt correlations. Detailed mean and turbulent velocities along with FLUENT simulations show that buoyancy effects cause a significant reduction in turbulent quantities at a radial location similar to what is the law of the wall region for isothermal flow. At bulk temperatures near the pseudocritical temperature, high mass velocity integral heat transfer measurements exhibited an enhanced heat transfer with a magnitude dependent on the applied heat flux. Measured mean and turbulent velocities showed no noticeable changes under these conditions. FLUENT simulations show that the integrated effects of specific heat can be used to explain the observed effects. The experimentally measured heat transfer and local velocity data also serve as a database to compare existing CFD models, such as Reynolds-averaged Navier-Stokes (RANS) equations and possibly even large Eddy simulations (LES) and direct numerical simulations (DNS). Ultimately, these measurements will aid in the development of models that can accurately predict heat transfer to supercritical pressure water.


1970 ◽  
Vol 92 (3) ◽  
pp. 490-497 ◽  
Author(s):  
J. W. Ackerman

Investigations of heat transfer to supercritical pressure fluids have been going on for some time, and correlations have been developed for both free and forced-convection conditions. In these investigations, unpredictable heat transfer performance has sometimes been observed when the pseudocritical temperature of the fluid is between the temperature of the bulk fluid and that of the heated surface. The unusual performance has been attributed to many causes, but one for which more evidence is being collected is that of a pseudofilm-boiling process similar to film boiling which occurs at subcritical pressures. This paper, which is an extension of work reported earlier on forced-convection heat transfer to supercritical pressure water, presents experimental evidence which suggests that a pseudofilm-boiling phenomenon can occur in smooth-bore tubes. During the period from 1963–1966, tubes with ID’s from 0.37 to 0.96 in. were tested at pressures from 3300–6000 psia and at heat fluxes and mass velocities in the range of interest in steam-generator design. The effects of heat flux, mass velocity, tube diameter, pressure, and bulk fluid temperature on both the occurrence and characteristics of pseudofilm boiling are discussed. Results of a second series of tests conducted in 1967, which show that ribbed tubes suppress pseudofilm boiling at supercritical pressure much like they do film boiling at subcritical pressures, are also discussed.


2021 ◽  
Vol 7 (4) ◽  
pp. 341-348
Author(s):  
Vladimir I. Belozerov

The paper presents the results of experimental studies of critical heat flows in vertical small diameter channels, when the coolant moves from bottom to top, which were carried out in the Obninsk branch of MEPhI in the 1970s of the last century but have not become widespread due to the lack of demand for their practical use. Nowadays, the interest in such works is manifested, first of all, in the development of compact plants and devices, particularly in nuclear power engineering. As a coolant, water, Freon-12 and 96% ethyl alcohol were used. High velocities of underheated liquid at high heat fluxes on the channel wall lead to the so-called “fast crisis” of heat transfer. In this case, the magnitude of the heat flux depends mainly on the parameters of the coolant flow in the wall zone rather than the flow core. The “slow crisis” is mainly observed at high vapor concentrations, relatively low mass flow rates and in an annular-dispersed flow. The value of the critical heat flow in this case depends mainly on the flow parameters in the core, which are probably close to the average coolant flow parameters. The conditions in the near-wall region are also largely determined by the flow in the core. High heat transfer coefficients in a flow moving at high speed usually result in a much smaller and slower rise in the wall temperature. Sometimes a DNB heat flux can occur bypassing the boiling process. In the core of a VVER-type reactor operating in its nominal mode, surface boiling is present in a number of fuel rods. Probably, surface boiling will also be present in transportable and small-size nuclear power plants. Therefore, an important task is to conduct relevant research in this area.


Author(s):  
Xiangfei Kong ◽  
Huixiong Li ◽  
Changjiang Liao ◽  
Xianliang Lei ◽  
Qian Zhang

Supercritical pressure water has been widely used in many industrial fields, such as fossil-fired power plants and nuclear reactors because mainly of its high thermal efficiencies. Although many empirical correlations for heat transfer coefficients of supercritical pressure water have been proposed by different authors based on different experimental data base, there exist remarkable discrepancies between the predicted heat transfer coefficients of different correlations under even the same condition. Heat transfer correlations with good prediction performance are of considerable significance for developing supercritical (ultra-supercritical) pressure boilers and SCWRs. In this paper, the experimental data (about 7389 experimental data points) and 30 existing empirical correlations for heat transfer of supercritical pressure water (SCW) flowing in vertical upward tubes are collected from the open literatures. Evaluations of the prediction performance of the existing correlations are conducted based on the collected experimental data, and a detailed multi-collinearity analysis has been made on different correction factors involved in the existing correlations, and then based on the collected experimental data, a new heat transfer correlation is developed for the supercritical pressure water flowing in vertical upward tubes under normal and enhanced heat transfer mode. Compared with the existing correlations, the new correlation exhibits good prediction accuracy, with a mean absolute deviation (MAD) of 9.63%.


2019 ◽  
Vol 95 ◽  
pp. 02004
Author(s):  
Vladimir Glazar ◽  
Anica Trp ◽  
Kristian Lenic ◽  
Fran Torbarina

This paper presents numerical analysis of fluid flow and heat transfer in the heat exchanger with microchannel coil (MCHX). In accordance with previously published experimental results, 3D mathematical model has been defined and appropriate numerical simulation of heat transfer has been performed. Geometry and working parameters of cross-flow air-water heat exchanger with microchannel coil, installed in an open circuit wind tunnel and used in experimental investigations, have been applied in numerical analysis in order to validate the mathematical model. 3D model with air and water fluid flow and heat transfer domains has been used, as it gives more precise results compared to models that assume constant temperatures or constant heat fluxes on the pipe walls. Developed model comprised full length of air and water flows in the heat exchanger. Due to limitations of computational capacity, domain has been divided in multiple computational blocks in the water flow direction and then solved successively using CFD solver Fluent. Good agreement between experimentally measured and numerically calculated results has been obtained. The influence of various working parameters on heat transfer in air-water heat exchanger has been studied numerically, followed with discussion and final conclusions.


Sign in / Sign up

Export Citation Format

Share Document