A Comparative Study of Flow Boiling in a Microchannel With Piranha Pin Fins

2016 ◽  
Vol 138 (11) ◽  
Author(s):  
X. Yu ◽  
C. Woodcock ◽  
Y. Wang ◽  
J. Plawsky ◽  
Y. Peles

In this paper, we report on the recent development of an advanced microscale heat sink, termed as piranha pin fin (PPF). A 200 μm deep microchannel embedded with PPFs was fabricated and tested. Fluid flow and heat transfer performance were evaluated with HFE7000 as the working fluid. The surface temperature, pressure drop, heat transfer coefficient, and critical heat flux (CHF) conditions were experimentally obtained and discussed. A 676 W/cm2 CHF was achieved based on the heater area and at an inlet mass flux of 2460 kg/m2 s. Microchannels with different PPF configurations were investigated and studied for different flow conditions. It was found that a microchannel with PPFs can dissipate high heat fluxes with reasonable pressure drops. Flow conditions and PPF configuration played important roles for both fluid flow and heat transfer performances. These studies extended knowledge and provided useful reference for further PPF design in microchannel for flow boiling.

Author(s):  
X. Yu ◽  
C. Woodcock ◽  
Y. Wang ◽  
J. Plawsky ◽  
Y. Peles

In this paper we reported an advanced structure, the Piranha Pin Fin (PPF), for microchannel flow boiling. Fluid flow and heat transfer performance were evaluated in detail with HFE7000 as working fluid. Surface temperature, pressure drop, heat transfer coefficient and critical heat flux (CHF) were experimentally obtained and discussed. Furthermore, microchannels with different PPF geometrical configurations were investigated. At the same time, tests for different flow conditions were conducted and analyzed. It turned out that microchannel with PPF can realize high-heat flux dissipation with reasonable pressure drop. Both flow conditions and PPF configuration played important roles for both fluid flow and heat transfer performance. This study provided useful reference for further PPF design in microchannel for flow boiling.


Author(s):  
Pei-Xue Jiang ◽  
Rui-Na Xu ◽  
Zhi-Hui Li ◽  
Chen-Ru Zhao

The convection heat transfer of CO2 at supercritical pressures in a 0.0992 mm diameter vertical tube at relatively high Reynolds numbers (Rein = 6500), various heat fluxes and flow directions are investigated experimentally and numerically. The effects of buoyancy and flow acceleration resulting from the dramatic property variations are studied. The Results show that the local wall temperature varied non-linearly for both upward and downward flow when the heat flux was high. The difference in the local wall temperature between upward and downward flow is very small when the other test conditions are held the same, which indicates that for supercritical CO2 flowing in a micro tube as employed in this study, the buoyancy effect on the convection heat transfer is insignificant and the flow acceleration induced by the axial density variation with temperature is the main factor leading to the abnormal local wall temperature distribution at high heat fluxes. The predicted temperatures using the LB low Reynolds number turbulence model correspond well with the measured data. To further study the influence of flow acceleration on the convection heat transfer, air is also used as the working fluid to numerically investigate the fluid flow and heat transfer in the vertical micro tube. The results show that the effect of compressibility on the fluid flow and heat transfer of air in the vertical micro tube is significant but that the influence of thermal flow acceleration on convection heat transfer of air in a vertical micro tube is insignificant.


Author(s):  
Ankit Kalani ◽  
Satish G. Kandlikar

Flow boiling with microchannel can dissipate high heat fluxes at low surface temperature difference. A number of issues, such as instabilities, low critical heat flux (CHF) and low heat transfer coefficients, have prevented it from reaching its full potential. A new design incorporating open microchannels with uniform and tapered manifold (OMM) was shown to mitigate these issues successfully. Distilled, degassed water at 80 mL/min is used as the working fluid. Plain and open microchannel surfaces are used as the test sections. Heat transfer and pressure drop performance for uniform and tapered manifold with both the surfaces are discussed. A low pressure drop of 7.5 kPa is obtained with tapered manifold and microchannel chip at a heat flux of 263 W/cm2 without reaching CHF. The pressure drop data is further compared with the homogenous model and the initial results are presented.


Author(s):  
Steven A. Isaacs ◽  
Yogendra Joshi ◽  
Yue Zhang ◽  
Muhannad S. Bakir ◽  
Yoon Jo Kim

In modern microprocessors, thermal management has become one of the main hurdles in continued performance enhancement. Cooling schemes utilizing single phase microfluidics have been investigated extensively for enhanced heat dissipation from microprocessors. However, two-phase fluidic cooling devices are becoming a promising approach, and are less understood. This study aims to examine two-phase flow and heat transfer within a pin-fin enhanced micro-gap. The pin-fin array covered an area of 1cm × 1cm and had a pin diameter, height and pitch of 150μm, 200μm and 225μm, respectively, (aspect ratio of 1.33). Heating from two upstream heaters was considered. The working fluid used was R245fa. The average heat transfer coefficient was evaluated for a range of heat fluxes and flow rates. Flow regime visualization was performed using high-speed imaging. Results indicate a sharp transition to convective flow boiling mechanism. Unique, conically-shaped two-phase wakes are recorded, demonstrating 2D spreading capability of the device. Surface roughness features are also discussed.


Author(s):  
Jensen Hoke ◽  
Todd Bandhauer ◽  
Jack Kotovsky ◽  
Julie Hamilton ◽  
Paul Fontejon

Liquid-vapor phase change heat transfer in microchannels offers a number of significant advantages for thermal management of high heat flux laser diodes, including reduced flow rates and near constant temperature heat rejection. Modern laser diode bars can produce waste heat loads >1 kW cm−2, and prior studies show that microchannel flow boiling heat transfer at these heat fluxes is possible in very compact heat exchanger geometries. This paper describes further performance improvements through area enhancement of microchannels using a pyramid etching scheme that increases heat transfer area by ∼40% over straight walled channels, which works to promote heat spreading and suppress dry-out phenomenon when exposed to high heat fluxes. The device is constructed from a reactive ion etched silicon wafer bonded to borosilicate to allow flow visualization. The silicon layer is etched to contain an inlet and outlet manifold and a plurality of 40μm wide, 200μm deep, 2mm long channels separated by 40μm wide fins. 15μm wide 150μm long restrictions are placed at the inlet of each channel to promote uniform flow rate in each channel as well as flow stability in each channel. In the area enhanced parts either a 3μm or 6μm sawtooth pattern was etched vertically into the walls, which were also scalloped along the flow path with the a 3μm periodicity. The experimental results showed that the 6μm area-enhanced device increased the average maximum heat flux at the heater to 1.26 kW cm2 using R134a, which compares favorably to a maximum of 0.95 kw cm2 dissipated by the plain walled test section. The 3μm area enhanced test sections, which dissipated a maximum of 1.02 kW cm2 showed only a modest increase in performance over the plain walled test sections. Both area enhancement schemes delayed the onset of critical heat flux to higher heat inputs.


Author(s):  
Jianyun Shuai ◽  
Rudi Kulenovic ◽  
Manfred Groll

Flow boiling in small-sized channels attracted extensive investigations in the past two decades due to special requirements for transfer of high heat fluxes from narrow spaces in various industrial applications. Experiments on various aspects of flow boiling in narrow channels were carried out and theoretical attempts were undertaken. But these investigations showed large differences, e.g. up till now the knowledge on the development of flow patterns in small non-circular flow passages is very limited. This paper deals with investigations on flow boiling of water in two rectangular channels with dimensions (width×depth) 2.0×4.0 mm2 and 0.5×2.0 mm2 (corresponding hydraulic diameters are 2.67 mm and 0.8 mm). The pressure at the test section exit is atmospheric. For steady-state experimental conditions the effects of heat flux, mass flux and inlet subcooling on the boiling heat transfer coefficient and the pressure drop are investigated. Flow patterns and the transition of flow patterns along the channel axis are visualized and documented with a video-camera. Bubbly flow, slug flow and annular flow are distinguished in both channels. Preliminary flow pattern maps are generated.


Author(s):  
Ayman Megahed ◽  
Ibrahim Hassan ◽  
Tariq Ahmad

The present study focuses on the experimental investigation of boiling heat transfer characteristics and pressure drop in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 295 μm, width of 254 μm, and a length of 16 mm. Un-encapsulated Thermochromic liquid Crystals (TLC) are used in the present work to enable nonintrusive and high spatial resolution temperature measurements. This measuring technique is used to provide accurate full and local surface-temperature and heat transfer coefficient measurements. Experiments are carried out for mass velocities ranging between 290 to 457 kg/m2.s and heat fluxes from 6.04 to 13.06 W/cm2 using FC-72 as the working fluid. Experimental results show that the pressure drop increases as the exit quality and the flow rate increase. High values of heat transfer coefficient can be obtained at low exit quality (xe < 0.2). However, the heat transfer coefficient decreases sharply and remains almost constant as the quality increases for an exit quality higher than 0.2.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Santosh Krishnamurthy ◽  
Yoav Peles

Flow boiling of 1-methoxyheptafluoropropane (HFE 7000) in 222 μm hydraulic diameter channels containing a single row of 24 inline 100 μm pin fins was studied for mass fluxes from 350 kg/m2 s to 827 kg/m2 s and wall heat fluxes from 10 W/cm2 to 110 W/cm2. Flow visualization revealed the existence of isolated bubbles, bubbles interacting, multiple flow, and annular flow. The observed flow patterns were mapped as a function of the boiling number and the normalized axial distance. The local heat transfer coefficient during subcooled boiling was measured and found to be considerably higher than the corresponding single-phase flow. Furthermore, a thermal performance evaluation comparison with a plain microchannel revealed that the presence of pin fins considerably enhanced the heat transfer coefficient.


Author(s):  
Hailei Wang ◽  
Richard Peterson

Flow boiling and heat transfer enhancement in four parallel microchannels using a dielectric working fluid, HFE 7000, was investigated. Each channel was 1000 μm wide and 510 μm high. A unique channel surface enhancement technique via diffusion bonding a layer of conductive fine wire mesh onto the heating wall was developed. According to the obtained flow boiling curves for both the bare and mesh channels, the amount of wall superheat was significantly reduced for the mesh channel at all stream-wise locations. This indicated that the nucleate boiling in the mesh channel was enhanced due to the increase of nucleation sites the mesh introduced. Both the nucleate boiling dominated and convective evaporation dominated regimes were identified. In addition, the overall trend for the flow boiling heat transfer coefficient, with respect to vapor quality, was increasing until the vapor quality reached approximately 0.4. The critical heat flux (CHF) for the mesh channel was also significantly higher than that of the bare channel in the low vapor quality region. Due to the fact of how the mesh was incorporated into the channels, no pressure drop penalty was identified for the mesh channels. Potential applications for this kind of mesh channel include high heat-flux electronic cooling systems and various energy conversion systems.


Author(s):  
Yusheng Liu ◽  
Puzhen Gao ◽  
Dianchuan Xing

Fluctuating flow is widely presented in nuclear power plant operating procedure. When the fluctuating flow occurs in the loop, the fluid flow and heat transfer in the core will be affected, which makes the study of flow fluctuation have more practical significance. With computational fluid dynamics (CFD), characteristics of fluid flow and heat transfer are numerically simulated in a horizontal tube under periodical fluctuating flow. The influences of different factors on the fluid flow and heat transfer are analyzed. The simulation results of steady flow and heat transfer in horizontal tube agree with the traditional empirical correlations’ results, which validates the feasibility of doing this research using CFD simulation. The horizontal tube fluctuation flow and heat transfer with different flow fluctuation periods, fluctuation relative amplitudes and heat fluxes are numerically simulated. The results show that the smaller the flow fluctuation period is, the larger the flow fluctuation relative amplitude we get, and the more evident influence of flow fluctuation on fluid flow and heat transfer can be found. The larger the heat flux is, the larger amplitude of temperature fluctuation of fluid will be. What is more, there is a lag in phase between friction coefficient and velocity, which is not presented between heat transfer coefficient and velocity.


Sign in / Sign up

Export Citation Format

Share Document