A Human-Centered Design of Electric Wheelchair Controller With Dual Control Access for Both Drivers of Disabled People and Caregiver

Author(s):  
Kuang Ma ◽  
Ziming Qi

This paper presents a design process of a novel electric wheelchair controller to enable a dual control access for both the users in the wheelchair and their caregivers. This design applied human-centered design frameworks, processes, and tools: Kumar's seven modes of the design innovation process and IDEO, Palo Alto, CA, design method cards. After such design process, a design of dual control access controller of an electric wheelchair is established. A real-size prototype has been built to prove the design concept; and further, the method of control switching between people in and behind the wheelchair has been optimized with the established prototype.

Author(s):  
Kuang Ma ◽  
Ziming Qi

This paper presents the design process of a novel general-purpose electric vehicle chassis as agriculture payload carrier platform to perform agricultural tasks: detection, guidance, mapping, and action. This design applied a human-centered design frameworks and processes: Kumar's seven modes of the design innovation process, and the three lenses of human-centered design by IDEO. After approach from three design-project perspectives mapping, a universal electric-powered multiwheel independent drive and independent steering robotic vehicle platform is designed for agricultural application. A real size prototype has been built to prove the design.


Author(s):  
Julien Garcia ◽  
Dominique Millet ◽  
Pierre Tonnelier

This paper lies within the integration of an eco-design method adapted to the Innovation structure at a car manufacturer. The environmental constraints in the automotive industry are more and more important (European emission standards for exhaust emissions, European directive on end-of life vehicles …). Eco-design is a new manner to design products related to the concept of sustainable development, which combines economy and ecology and put the environmental criterion alongside the classical criterions of design. The goal of this study is to identify the specifications of a strategy for integrating the dimension “Environment”. This strategy is applied in the innovation process thanks to eco-design tools which are the learning vectors for an organization, and therefore support a learning process. This process is structured with the interactions between the management of firm, the environment department, and the design team. Therefore we first make a synthesis of the different classifications of eco-design tools and use two categories: diagnosis and improvement. Second, as our goal is the integration in the Innovation structure and within a design process, we analyze some design process models and highlight the RID (Research, Innovation structure, Development) concept. Third, the main practices of several car makers are synthetized and a focus on three of them (Volvo, Ford, and Volkswagen) is made; we link their strategies with the concept of RID. Finally in the fourth part, we propose a model of a strategy for integrating eco-design practices based on the three examples and supported by a learning process.


2018 ◽  
Vol 3 (2) ◽  
pp. 12
Author(s):  
Desy Dwi Putri

Basically the application of Foodtruck in modern society is classified as a sales medium that is required to move freely with consideration of location that can change, in the application of foodtruck design must include efficiency in mobilization and interior that is in accordance with the character of foodtruck , namely the use of interior elements as optional gasket that must be considered in the foodtruck design method, including furniture thatdominates the layout of the room. Furniture design in the foodtruck area becomes the foundation in the form of rules that answer the problem of an activity. The process to produce an object that has a high value of economic, aesthetic and functional. In the method of applying geometry to a stoolcan be used as a reference in construction, supporting activities, capacity and integrity of the results of a design process, in the stoolthere are some basic problem identification and relevance to the geometry transformation process and examine any errors that must be avoided in a stooldesign with the aim of meeting standards, to minimize errors in a design concept stoolthat plays in the scope of geometry and shape transformation


2014 ◽  
Vol 548-549 ◽  
pp. 801-805
Author(s):  
Hong Yang ◽  
Zhe Zhang ◽  
Ya Luo

In order to promote improvement in the applicability, quality and economic rationality for ATSE with dual power supply, the design method based on the notion of inverse form is proposed in this paper. The component-based inverse form innovation design concept for ATSE with dual power supply is discussed by theoretical analysis and applicable study with two examples, after this paper expresses the importance of product innovation design, including innovation design of ATSE with dual power supply. Especially, ATSE innovation design process with component-based inverse form is researched in detail. Next, some useful and basic advices on how to optimize ATSE products by the notion of inverse form are stated. At the same time, this paper also points out that the structure of ATSE product becomes more reasonable by appropriate use of the innovation design method with inverse form.


Author(s):  
Timur Smetani ◽  
Elizaveta Gureva ◽  
Vyacheslav Andreev ◽  
Natalya Tarasova ◽  
Nikolai Andree

The article discusses methods for optimizing the design of the Neutron Converter research plant design with parameters that are most suitable for a particular consumer. 38 similar plant structures with different materials and sources were calculated, on the basis of which the most optimal options were found. As part of the interaction between OKBM Afrikantov JSC and the Nizhny Novgorod State Technical University named after R. E. Alekseev, the Neutron Converter research plant was designed and assembled. The universal neutron converter is a device for converting a stream of fast neutrons emitted by isotopic sources into a "standardized" value of flux density with known parameters in the volume of the central part of the product, which is the working part of the universal neutron converter. To supply neutron converters to other customer organizations (universities, research organizations and collective centers), it is necessary to take into account the experience of operating an existing facility, as well as rationalize the design process of each specific instance in accordance with the requirements of the customer.


2021 ◽  
Vol 11 (7) ◽  
pp. 3266
Author(s):  
Insub Choi ◽  
Dongwon Kim ◽  
Junhee Kim

Under high gravity loads, steel double-beam floor systems need to be reinforced by beam-end concrete panels to reduce the material quantity since rotational constraints from the concrete panel can decrease the moment demand by inducing a negative moment at the ends of the beams. However, the optimal design process for the material quantity of steel beams requires a time-consuming iterative analysis for the entire floor system while especially keeping in consideration the rotational constraints in composite connections between the concrete panel and steel beams. This study aimed to develop an optimal design method with the LM (Length-Moment) index for the steel double-beam floor system to minimize material quantity without the iterative design process. The LM index is an indicator that can select a minimum cross-section of the steel beams in consideration of the flexural strength by lateral-torsional buckling. To verify the proposed design method, the material quantities between the proposed and code-based design methods were compared at various gravity loads. The proposed design method successfully optimized the material quantity of the steel double-beam floor systems without the iterative analysis by simply choosing the LM index of the steel beams that can minimize objective function while satisfying the safety-related constraint conditions. In particular, under the high gravity loads, the proposed design method was superb at providing a quantity-optimized design option. Thus, the proposed optimal design method can be an alternative for designing the steel double-beam floor system.


Author(s):  
Jan Schumann ◽  
Ulrich Harbecke ◽  
Daniel Sahnen ◽  
Thomas Polklas ◽  
Peter Jeschke ◽  
...  

The subject of the presented paper is the validation of a design method for HP and IP steam turbine stages. Common design processes have been operating with simplified design methods in order to quickly obtain feasible stage designs. Therefore, inaccuracies due to assumptions in the underlying methods have to be accepted. The focus of this work is to quantify the inaccuracy of a simplified design method compared to 3D Computational Fluid Dynamics (CFD) simulations. Short computing time is very convenient in preliminary design; therefore, common design methods work with a large degree of simplification. The origin of the presented analysis is a mean line design process, dealing with repeating stage conditions. Two features of the preliminary design are the stage efficiency, based on loss correlations, and the mechanical strength, obtained by using the beam theory. Due to these simplifications, only a few input parameters are necessary to define the primal stage geometry and hence, the optimal design can easily be found. In addition, by using an implemented law to take the radial equilibrium into account, the appropriate twist of the blading can be defined. However, in comparison to the real radial distribution of flow angles, this method implies inaccuracies, especially in regions of secondary flow. In these regions, twisted blades, developed by using the simplified radial equilibrium, will be exposed to a three-dimensional flow, which is not considered in the design process. The analyzed design cases show that discrepancies at the hub and shroud section do exist, but have minor effects. Even the shroud section, with its thinner leading-edge, is not vulnerable to these unanticipated flow angles.


Author(s):  
Danielle Poreh ◽  
Euiyoung Kim ◽  
Varna Vasudevan ◽  
Alice Agogino

Despite the growing utilization of human-centered design, both in academia and industry, there is lack of pedagogical materials that support context-based design method selection. When used properly, design methods are linked to successful outcomes in the design process, but with hundreds of design methods to select from, knowing when and how to use a particular method is challenging. Selecting the appropriate design method requires a deep understanding of the project context. Cultivating a selection methodology that is more contextually aware, equips students with the tools to apply the most appropriate methods to their future academic and industry projects. Using theDesignExchange knowledge platform as a teaching material, we discuss a summer design course at the University of California at Berkeley that encourages students to choose design methods rather than the instructors giving a set list. The findings illustrate that when given the task to select a method, students exhibit contextually-aware method selection mindsets.


2012 ◽  
Vol 263-266 ◽  
pp. 1853-1857
Author(s):  
Mao Lin Wang ◽  
Ai Jun Xu

In this article, geometric primitive approach is used to realize the design and development of point symbol database for mapping based on C# .NET and ArcGIS Engine. This paper presents the design framework and the design process of point symbol database, and studies design method and attribute management of point symbol, especially the design of point symbol attribute of word type of TrueType, which makes conveniently the point symbol for special map users needed.


Sign in / Sign up

Export Citation Format

Share Document