scholarly journals Novel Frame Model for Mistuning Analysis of Bladed Disk Systems

2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Jie Yuan ◽  
Fabrizio Scarpa ◽  
Branislav Titurus ◽  
Giuliano Allegri ◽  
Sophoclis Patsias ◽  
...  

The work investigates the application of a novel frame model to reduce computational cost of the mistuning analysis of bladed disk systems. A full-scale finite element (FE) model of the bladed disk is considered as benchmark. The frame configuration for a single blade is identified through structural identification via an optimization process. The individual blades are then assembled by three-dimensional (3D) springs, whose parameters are determined by means of a calibration process. The dynamics of the novel beam frame assembly is also compared to those obtained from three state-of-the-art FE-based reduced order models (ROMs), namely: a lumped parameter approach, a Timoshenko beam assembly, and component mode synthesis (CMS)-based techniques with free and fixed interfaces. The development of these classical ROMs to represent the bladed disk is also addressed in detail. A methodology to perform the mistuning analysis is then proposed and implemented. A comparison of the modal properties and forced response dynamics between the aforementioned ROMs and the full-scale FE model is presented. The case study considered in this paper demonstrates that the beam frame assembly can predict the variations of the blade amplitude factors, and the results are in agreement with full-scale FE model. The CMS-based ROMs underestimate the maximum amplitude factor, while the results obtained from beam frame assembly are generally conservative. The beam frame assembly is four times more computationally efficient than the CMS fixed-interface approach. This study proves that the beam frame assembly can efficiently predict the mistuning behavior of bladed disks when low-order modes are of interest.

Author(s):  
I. Sladojevic´ ◽  
E. P. Petrov ◽  
M. Imregun ◽  
A. I. Sayma

The paper presents the results of a study looking into changes in the forced response levels of bladed disc assemblies subject to both structural and aerodynamic mistuning. A whole annulus FE model, representative of a civil aero-engine fan with 26 blades was used in the calculations. The forced response of all blades of 1000 random mistuned patterns was calculated. The aerodynamic parameters, frequency shifts and damping, were calculated using a three-dimensional Reynolds-averaged Navier-Stokes aero-elasticity code. They were randomly varied for each mistuning pattern, with the assumption that the system would remain stable, i.e. flutter would not occur due to aerodynamic mistuning. The results show the variation of the forced response with different types of mistuning, with structural mistuning only, with aerodynamic mistuning only and with both structural and aerodynamic mistuning.


2011 ◽  
Vol 21 (10) ◽  
pp. 2893-2904 ◽  
Author(s):  
LADISLAV PŮST ◽  
LUDĚK PEŠEK

The steady state response of a model of circular bladed disk with imperfection is investigated. Disk imperfection results from additional two groups of damping heads fixed on opposite ends of one diameter. These damping heads are introduced into the computing model as additional point mass, damping and stiffness. Such type of imperfection causes the bifurcation of double eigenfrequencies into pairs of close eigenfrequencies. The effect of imperfection is examined both numerically on three-dimensional nonrotating FE-model and analytically on a simplified split 2DOF model of rotating disk excited by single point harmonic force. Nonlinear friction connection is analyzed and equivalent linear damping coefficient is derived and used in the calculation procedure. It is shown that nonproportional distribution of damping strongly influences the high of resonance peaks. Some examples of response curves illustrate the dynamic properties of stationary and rotating disks with mass-damping-stiffness imperfection.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Chulwoo Jung ◽  
Akira Saito ◽  
Bogdan I. Epureanu

A novel methodology to detect the presence of a crack and to predict the nonlinear forced response of mistuned turbine engine rotors with a cracked blade and mistuning is developed. The combined effects of the crack and mistuning are modeled. First, a hybrid-interface method based on component mode synthesis is employed to develop reduced-order models (ROMs) of the tuned system with a cracked blade. Constraint modes are added to model the displacements due to the intermittent contact between the crack surfaces. The degrees of freedom (DOFs) on the crack surfaces are retained as active DOFs so that the physical forces due to the contact/interaction (in the three-dimensional space) can be accurately modeled. Next, the presence of mistuning in the tuned system with a cracked blade is modeled. Component mode mistuning is used to account for mistuning present in the uncracked blades while the cracked blade is considered as a reference (with no mistuning). Next, the resulting (reduced-order) nonlinear equations of motion are solved by applying an alternating frequency/time-domain method. Using these efficient ROMs in a forced response analysis, it is found that the new modeling approach provides significant computational cost savings, while ensuring good accuracy relative to full-order finite element analyses. Furthermore, the effects of the cracked blade on the mistuned system are investigated and used to detect statistically the presence of a crack and to identify which blade of a full bladed disk is cracked. In particular, it is shown that cracks can be distinguished from mistuning.


Author(s):  
Evange´line Capiez-Lernout ◽  
Christian Soize ◽  
Jean-Pierre Lombard ◽  
Christian Dupont ◽  
Eric Seinturier

This paper deals with the characterization of the blade manufacturing geometric tolerances in order to get a given level of amplification in the forced response of a mistuned bladed-disk. It is devoted to an industrial application in order to validate the theory previously developed [1] and in order to show that this theory is suited to any industrial bladed-disks. It should be noted that the development of an adapted methodology for solving the inverse problem, in order to characterize the manufacturing tolerances, is an important challenge for industries in this area. Let us recall that this theory is based on the use of a nonparametric probabilistic model of random uncertainties in the blade [2]. The dispersion parameters controlling the nonparametric model are estimated as a function of the geometric tolerances. Such an identification is carried out in a computational context by using the numerical Monte Carlo simulation and by using the reduced model method presented in [3]. The industrial application is devoted to the mistuning analysis of a 22 blades wide chord fan stage. Centrifugal stiffening due to rotational effects is also included. The results obtained validate the efficiency and the reliability of the method on three dimensional bladed disks.


Author(s):  
Jean de Cazenove ◽  
Scott Cogan ◽  
Moustapha Mbaye

Integrally bladed rotors dynamic properties are known to be particularly sensitive to small geometric discrepancies due to the machining process or in-service wear. In this context, it is straightforward that setting up accurate numerical models which take into account real mistuning patterns is a key issue in the prediction of forced response amplitudes under operating conditions. The present study focuses on an experimental bladed disk. Due to strong inter-blade coupling, the geometric mistuning is supposed to result in severe mode localization for the studied bladed disk, thus emphasizing the need of a realistic, predictive finite-element model. This paper describes the procedure which leads to the development and validation of a high-fidelity FE model for a realistic bladed disk, based on coordinate measurements by means of fringe projection. After giving an overview of the coordinate measurement and model building for the studied bladed disk, the comparison of cantilevered-blade and full disk calculated eigenfrequencies to individual blade and full disk in quasi-vacuum measurements are presented.


Author(s):  
Chaoping Zang ◽  
Yuanqiu Tan ◽  
E. P. Petrov

A new method is developed for the forced response analysis of mistuned bladed disks manufactured from anisotropic materials and mistuned by different orientations of material anisotropy axes. The method uses (i) sector finite element (FE) models of anisotropic bladed disks and (ii) FE models of single blades and allows the calculation of displacements and stresses in a mistuned assembly. A high-fidelity reduction approach is proposed which ensures high-accuracy modeling by introducing an enhanced reduction basis. The reduction basis includes the modal properties of specially selected blades and bladed disks. The technique for the choice of the reduction basis has been developed, which provides the required accuracy while keeping the computation expense acceptable. An approach for effective modeling of anisotropy-mistuned bladed disk without a need to create a FE model for each mistuning pattern is developed. The approach is aimed at fast statistical analysis based on Monte Carlo simulations. All components of the methodology for anisotropy-mistuned bladed disks are demonstrated on the analysis of models of practical bladed disks. Effects of anisotropy mistuning on forced response levels are explored.


Author(s):  
Alok Sinha

This paper examines the nature of the statistical distribution of the peak maximum amplitude of the forced response of a mistuned bladed disk. A range of values of the structural coupling between blades and the standard deviation of mistuning have been used, and it is determined if it is correct to describe the distribution of the peak maximum amplitude as Weibull. Also, using a neural network, a functional relationship between the peak maximum amplitude distribution and input parameters (structural coupling between blades and standard deviation of mistuning) is sought via coefficients of Hermite polynomials and 99 percentile peak maximum amplitude.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Johann Gross ◽  
Malte Krack ◽  
Harald Schoenenborn

The prediction of aerodynamic blade forcing is a very important topic in turbomachinery design. Usually, the wake from the upstream blade row and the potential field from the downstream blade row are considered as the main causes for excitation, which in conjunction with relative rotation of neighboring blade rows, give rise to dynamic forcing of the blades. In addition to those two mechanisms, the so-called Tyler–Sofrin (or scattered or spinning) modes, which refer to the acoustic interaction with blade rows further up- or downstream, may have a significant impact on blade forcing. In particular, they lead to considerable blade-to-blade variations of the aerodynamic loading. In Part I of the paper, a study of these effects is performed on the basis of a quasi-three-dimensional multirow and multipassage compressor configuration. Part II of the paper proposes a method to analyze the interaction of the aerodynamic forcing asymmetries with the already well-studied effects of random mistuning stemming from blade-to-blade variations of structural properties. Based on a finite element (FE) model of a sector, the equations governing the dynamic behavior of the entire bladed disk can be efficiently derived using substructuring techniques. The disk substructure is assumed as cyclically symmetric, while the blades exhibit structural mistuning and linear aeroelastic coupling. In order to avoid the costly multistage analysis, the variation of the aerodynamic loading is treated as an epistemic uncertainty, leading to a stochastic description of the annular force pattern. The effects of structural mistuning and stochastic aerodynamic forcing are first studied separately and then in a combined manner for a blisk of a research compressor without and with aeroelastic coupling.


2014 ◽  
Vol 891-892 ◽  
pp. 726-731
Author(s):  
Guang Xia Chen ◽  
Jian Fu Hou

Abstract. The objective of this paper is to probabilistically evaluate the effects of mistuned sectors on the dynamic characteristics of an integrally bladed disk (blisk). Small blade to blade physical variation in a disk is termed as mistuning. In this study, the dynamic characteristics of the perfectly tuned blisk were firstly analysed as a baseline. Secondly, a probabilistic approach is used for the mistuning analysis of a blisk. A reduced-order method named as the subset of nominal modes (SNM) was used to generate modes for a mistuned blisk from a cyclic perfectly tuned FE model without creating the full model. Furthermore, as only the modes with natural frequencies close to the modes of interest were considered, a relatively shorter computational time and a much smaller model size than a full blisk model is used. Therefore, the dynamic characteristics of the forced response for random mistuned blisks were obtained.


Author(s):  
Chulwoo Jung ◽  
Akira Saito ◽  
Bogdan I. Epureanu

A novel methodology to detect the presence of a crack and to predict the nonlinear forced response of mistuned turbine engine rotors with a cracked blade and mistuning is developed. The combined effects of the crack and mistuning are modeled. First, a hybrid-interface method based on component mode synthesis is employed to develop reduced order models (ROMs) of the tuned system with a cracked blade. Constraint modes are added to model the displacements due to the intermittent contact between the crack surfaces. The degrees of freedom (DOFs) on the crack surfaces are retained as active DOFs so that the physical forces due to the contact/interaction (in the three-dimensional space) can be accurately modeled. Next, the presence of mistuning in the tuned system with a cracked blade is modeled. Component mode mistuning is used to account for mistuning present in the un-cracked blades while the cracked blade is considered as a reference (with no mistuning). Next, the resulting (reducedorder) nonlinear equations of motion are solved by applying an alternating frequency/time-domain method. Using these efficient ROMs in a forced response analysis, it is found that the new modeling approach provides significant computational cost savings, while ensuring good accuracy relative to full-order finite element analyses. Furthermore, the effects of the cracked blade on the mistuned system are investigated, and used to detect statistically the presence of a crack and to identify which blade of a full bladed disk is cracked. In particular, it is shown that cracks can be distinguished from mistuning.


Sign in / Sign up

Export Citation Format

Share Document