Control of Vortex Shedding Using a Screen Attached on the Separation Point of a Circular Cylinder and Its Effect on Drag

2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Gokturk Memduh Ozkan ◽  
Erhan Firat ◽  
Huseyin Akilli

The control of flow in the wake of a circular cylinder by an attached permeable plate having various porosity ratios was analyzed experimentally using both particle image velocimetry (PIV) and dye visualization techniques. The force measurements were also done in order to interpret the effect of control method on drag coefficient. The diameter of the cylinder and length to diameter ratio of the plate were kept constant as D = 50 mm and L/D = 1.0, respectively. The porosity ratio, β, which can be defined as the ratio of open surface area to the whole body surface area, was taken as β = 0.4, 0.5, 0.6, 0.7, and 0.8 (permeable plates). The study was performed considering deep water flow conditions with a constant Reynolds number of ReD = 5000 based on the cylinder diameter. Each permeable plate was attached on the separation point and the results were compared with the results of cylinder without permeable plate (plain cylinder) in order to understand the control effect. Both qualitative and quantitative results revealed that the permeable plates of 0.4 ≤ β ≤ 0.6 are effective on controlling the unsteady flow structure downstream of the cylinder, i.e., the vortex formation length was increased, turbulent statistics was reduced and vortex shedding frequency was diminished when the permeable plate attached normal to the cylinder surface from the lower separation point. However, the drag force acting on the cylinder was found to be increased due to the increased cross-sectional area.

Author(s):  
Gokturk Memduh Ozkan ◽  
Huseyin Akilli

The flow downstream of a plain cylinder with attached permeable plates having various porosity ratios was investigated experimentally using both Particle Image Velocimetry (PIV) and dye visualization techniques to control the vortex shedding around the circular cylinder. The diameter of the cylinder and length to diameter ratio of the plate were kept constant as d= 50 mm and L/d=1.0, respectively. The porosity ratio, β which can be defined as the ratio of open area to the whole body surface area was taken as β=0.4, 0.5, 0.6, 0.7 and 0.8 (permeable plates). The study was performed considering deep water flow conditions and depth-averaged free stream velocity was taken constant as U = 95.2mm/s which corresponded to a Reynolds number of Red = 5000 based on the cylinder diameter. The results of a plain cylinder were compared with the results of cylinder with permeable plates in order to understand the control effect. Both qualitative and quantitative results revealed that the plates are effective on the unsteady flow structure downstream of the cylinder, i.e. the vortex formation length was increased, turbulent statistics was reduced and both width and length of the wake were changed by usage of permeable plates attached around the separation point of the cylinder.


CFD letters ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 51-68
Author(s):  
Nurul Azihan Ramli ◽  
Azlin Mohd Azmi ◽  
Ahmad Hussein Abdul Hamid ◽  
Zainal Abidin Kamarul Baharin ◽  
Tongming Zhou

Flow over bluff bodies produces vortex shedding in their wake regions, leading to structural failure from the flow-induced forces. In this study, a passive flow control method was explored to suppress the vortex shedding from a circular cylinder that causes many problems in engineering applications. Perforated shrouds were used to control the vortex shedding of a circular cylinder at Reynolds number, Re = 200. The shrouds were of non-uniform and uniform holes with 67% porosity. The spacing gap ratio between the shroud and the cylinder was set at 1.2, 1.5, 2, and 2.2. The analysis was conducted using ANSYS Fluent using a viscous laminar model. The outcomes of the simulation of the base case were validated with existing studies. The drag coefficient, Cd, lift coefficient, Cl and the Strouhal number, St, as well as vorticity contours, velocity contours, and pressure contours were examined. Vortex shedding behind the shrouded cylinders was observed to be suppressed and delayed farther downstream with increasing gap ratio. The effect was significant for spacing ratio greater than 2.0. The effect of hole types: uniform and non-uniform holes, was also effective at these spacing ratios for the chosen Reynolds number of 200. Specifically, a spacing ratio of 1.2 enhanced further the vortex intensity and should be avoided.


2011 ◽  
Vol 680 ◽  
pp. 459-476 ◽  
Author(s):  
PRANESH MURALIDHAR ◽  
NANGELIE FERRER ◽  
ROBERT DANIELLO ◽  
JONATHAN P. ROTHSTEIN

Superhydrophobic surfaces have been shown to produce significant drag reduction for both laminar and turbulent flows of water through large- and small-scale channels. In this paper, a series of experiments were performed which investigated the effect of superhydrophobic-induced slip on the flow past a circular cylinder. In these experiments, circular cylinders were coated with a series of superhydrophobic surfaces fabricated from polydimethylsiloxane with well-defined micron-sized patterns of surface roughness. The presence of the superhydrophobic surface was found to have a significant effect on the vortex shedding dynamics in the wake of the circular cylinder. When compared to a smooth, no-slip cylinder, cylinders coated with superhydrophobic surfaces were found to delay the onset of vortex shedding and increase the length of the recirculation region in the wake of the cylinder. For superhydrophobic surfaces with ridges aligned in the flow direction, the separation point was found to move further upstream towards the front stagnation point of the cylinder and the vortex shedding frequency was found to increase. For superhydrophobic surfaces with ridges running normal to the flow direction, the separation point and shedding frequency trends were reversed. Thus, in this paper we demonstrate that vortex shedding dynamics is very sensitive to changes of feature spacing, size and orientation along superhydrophobic surfaces.


2017 ◽  
Vol 30 (1) ◽  
pp. 04016063 ◽  
Author(s):  
Wen-Li Chen ◽  
Xiangjun Wang ◽  
Feng Xu ◽  
Hui Li ◽  
Hui Hu

Author(s):  
Wenli Chen ◽  
Hui Li ◽  
Hui Hu

A passive jet flow control method was employed to suppress the unsteady vortex shedding from a circular cylinder at the Reynolds number level of Re = (0.18∼1.1)×105. The passive jet flow control was achieved by blowing jets from the holes near the rear stagnation point of the cylinder, which are connected to the in-take holes located near the front stagnation point through channels embedded inside the cylinder. Since a part of the oncoming flow would inhale into the in-take holes, flow through the embedded channels, and blow out from the holes near the rear stagnation point to suppress/manipulate the alternating vortex shedding in the wake flow behind the circular cylinder, the present passive jet flow control method does not require any additional energy inputs for the flow control. In the present study, the aerodynamic force (i.e., both lift and drag) acting the circular cylinder model with and without the passive jet flow control were compared quantitatively at different Reynolds numbers (i.e., different inlet mean speed). It was found that, in addition to almost eliminating the fluctuations of the lift forces acting on the cylinder, the passive jet flow control method was also found to reduce the mean drag acting on the cylinder model greatly. The instantaneous vorticity distributions and corresponding streamline patterns were used to reveal the underlying physics about why and how the passive jet flow control method can be used to suppress the alternating vortex shedding and induce a symmetrical wake pattern behind the cylinder model.


Author(s):  
Yasuaki Kozato ◽  
Satoshi Kikuchi ◽  
Shigeki Imao

This study analyzes the flow around a circular cylinder when a dielectric barrier discharge (DBD) plasma actuator is mounted on the cylinder surface. The experiments are mainly performed at Re = 26500. Flow visualization, surface pressures, and wake velocity measurements are performed for the on and off modes of the plasma (pulse modulated drive). The results indicate that the wake expansion and the length of the cavity region significantly change depending on the actuator location, duty ratio and modulation frequency. When the actuator is located close to the separation point and is driven at the Karman vortex shedding frequency (St = 0.19) with the symmetric actuation mode or at St = 0.38 with the asymmetric actuation mode, the vortex shedding is amplified and the surface pressure behind the cylinder decreases; consequently, the pressure drag increases. On the other hand, at a higher modulation frequency (St ≧1), the vortex shedding process is weakened and the wake turbulence is suppressed; consequently, the drag is reduced to 80% of the non-excited case.


2004 ◽  
Vol 127 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Z. J. Wang ◽  
Y. Zhou

The vortex-induced structural vibration of an elastic square cylinder, on fixed supports at both ends, in a uniform cross flow was measured using fiber-optic Bragg grating sensors. The measurements are compared to those obtained for an elastic circular cylinder of the same hydraulic diameter in an effort to understand the effect of the nature (fixed or oscillating) of the flow separation point on the vortex-induced vibration. It is found that a violent vibration occurs at the third-mode resonance when the vortex-shedding frequency coincides with the third-mode natural frequency of the fluid-structure system, irrespective of the cross-sectional geometry of the cylinder. This is in distinct contrast to previous reports of flexibly supported rigid cylinders, where the first-mode vibration dominates, thus giving little information on the vibration of other modes. The resonance behavior is neither affected by the incidence angle (α) of the free stream, nor by the nature of the flow separation point. However, the vibration amplitude of the square cylinder is about twice that of the circular cylinder even though the flexural rigidity of the former is larger. This is ascribed to a difference in the nature of the flow separation point between the two types of structures. The characteristics of the effective modal damping ratios, defined as the sum of structural and fluid damping ratios, and the system natural frequencies are also investigated. The damping ratios and the system natural frequencies vary little with the reduced velocity at α=0deg, but appreciable at α⩾15deg; they further experience a sharp variation, dictated by the vortex-shedding frequency, near resonance.


Author(s):  
Donggun Son ◽  
Seung Jeon ◽  
Haecheon Choi

In the present study, we apply proportional-integral-differential (PID) feedback controls to flow over a circular cylinder for suppression of vortex shedding in the wake. The transverse velocity at a centerline location in the wake is measured and used for the feedback control. The actuation (blowing/suction) is provided to the flow at the upper and lower slots on the cylinder surface near the separation point based on the P, PI or PD control. The sensing location is varied from 1d to 4d from the center of the cylinder. Given each sensing location, the optimal proportional gain in the sense of minimizing the sensing velocity fluctuations is obtained for the P control. The P control significantly reduces the fluctuations of the sensing velocity at certain sensing positions that is called the effective sensing region. The additions of I and D controls to the P control increase the control performance and broaden the effective sensing location. The P, PI and PD controls significantly reduce the velocity fluctuations and attenuate vortex shedding in the wake, resulting in the reductions in the mean drag and lift fluctuations.


Sign in / Sign up

Export Citation Format

Share Document