scholarly journals Evaluation of Design Feedback Modality in Design for Manufacturability

2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Prashant Barnawal ◽  
Michael C. Dorneich ◽  
Matthew C. Frank ◽  
Frank Peters

The early conceptual design phase often focuses on functional requirements, with limited consideration of the manufacturing processes needed to turn design engineers' conceptual models into physical products. Increasingly, design and manufacturing engineers no longer work in physical proximity, which has slowed the feedback cycle and increased product lead-time. Design for manufacturability (DFM) techniques have been adopted to overcome this problem and are critical for faster convergence to a manufacturable design. DFM tools give feedback in textual and graphical modalities. However, since information modality may affect interpretability, empirical evidence is needed to understand how manufacturability feedback modalities affect design engineers' work. A user study evaluated how novice design engineers' design performance, workload, confidence, and feedback usability were affected by textual, two-dimensional (2D), and three-dimensional (3D) feedback modalities. Results showed that graphical feedback significantly improved performance and reduced mental workload compared to textual and no feedback. Differences between 3D and 2D feedback were mixed. Three-dimensional was generally better on average, but not significantly so. However, the usability of 3D was significantly higher than 2D. Conversely, providing feedback in textual modality was often no better than not providing feedback. The study will benefit manufacturing industries by demonstrating that early 3D manufacturability feedback improves novice design engineers' performance with less mental workload and streamlines the design process resulting in cost-saving and reduction of product lead-time.

Nanoscale ◽  
2015 ◽  
Vol 7 (30) ◽  
pp. 13051-13060 ◽  
Author(s):  
Ruiqing Xing ◽  
Qingling Li ◽  
Lei Xia ◽  
Jian Song ◽  
Lin Xu ◽  
...  

3DIO macroporous In2O3 films with additional via-hole architectures were fabricated and Au NPs were loaded, which were applied for detecting of acetone gas in exhaled breath.


2013 ◽  
Vol 546 ◽  
pp. 93-95
Author(s):  
Fang Xie ◽  
You Jun Wang ◽  
Qiu Juan Lv ◽  
Hai Xia Du ◽  
Yan Jiao Li

The traditional engineering graphics model room could not be effective use by space, time and other factors of limitation. In view of the above questions, network engineering graphics model room was built with VRML software as a platform. This technology made use of PRO/E, Dreamweaver, Java software in order to transmission stability, the three dimensional visualization and strong interactivity and functional requirements. It has the important practical significance in remote education and teaching.


2013 ◽  
Vol 13 (1) ◽  
pp. 18-28 ◽  
Author(s):  
Chao-Hung Lin ◽  
Jyun-Yuan Chen ◽  
Shun-Siang Hsu ◽  
Yun-Huan Chung

Tourist maps are designed to direct tourists to tourist attractions in unfamiliar areas. A well-designed tourist map can provide tourists with sufficient and intuitive information about places of interest. Thus, providing up-to-date information on places of interest and selecting their representative icons are fundamental and important in automatic generation of tourist maps. In this article, approaches for determining places of interest and for determining their representative icons are introduced. In contrast to general digital tourist maps that use text, simple shapes, or three-dimensional models, we use photos that offer abundant visual features of places of interest as icons in tourist maps. The photos are automatically extracted from a repository of photos downloaded from photo-sharing communities. Tourist attractions and their corresponding image icons are determined by means of photo voting and photo quality assessment. Qualitative analyses, including a user study and experiments in several areas with numerous tourist attractions, indicated that the proposed method can generate visually pleasant and elaborate tourist maps. In addition, the analyses indicated that the map produced by our method is better than maps generated by related methods and is comparable to hand-designed tourist maps.


Author(s):  
Jean Franc¸ois Sigrist ◽  
Christian Laine ◽  
Dominique Lemoine ◽  
Bernard Peseux

This paper is related to the study of a nuclear propulsion reactor prototype for the French Navy. This prototype is built on ground and is to be dimensioned toward seismic loading. The dynamic analysis takes the coupled fluid structure analysis into account. The basic fluid models used by design engineers are inviscid incompressible or compressible. The fluid can be described in a bidimensional by slice or a three-dimensional approach. A numerical study is carried out on a generic problem for the linear FSI dynamic problem. The results of this study are presented and discussed. As a conclusion, the three-dimensional inviscid incompressible fluid appears to be the best compromise between the description of physical phenomena and the cost of modeling. The geometry of the reactor is such that large displacements of the structure in the fluid can occur. Therefore, the linearity hypothesis might not be longer valid. The case of large amplitude imposed oscillating motion of a cylinder in a confined fluid is numerically studied. A CFD code is used to investigate the fluid behavior solving the NAVIER-STOKES equations. The forces induced on the cylinder by the fluid are computed and compared to the linear solution. The limit of the linear model can then be exhibited.


Author(s):  
Cassio D. Goncalves ◽  
Michael Kokkolaras

Competitive markets and complex business-to-business environments compel manufacturers to provide innovative service offerings along with their products. This necessitates effective methodologires for developing and implementing sucessful new business strategies. This article presents an approach to model tactical and operational decisions to support the design and development of Product-Service Systems (PSSs). A combination of Quality Function Deployment and Design-to-Cost techniques is proposed as the first step of a PSS design framework that aids design engineers to determine the relations among value to customer, functional requirements, design variables and cost. The objective is to identify PSS design alternatives that deliver value to customer while respecting cost targets. An aerospace software case study is conducted to demonstrate the proposed approach.


2002 ◽  
Vol 10 (2) ◽  
pp. 153-164 ◽  
Author(s):  
J. C. Sand ◽  
P. Gu ◽  
G. Watson

Product modularization aims to improve the overall design, manufacturing, operational, and post-retirement characteristics of products by designing or redesigning the product architectures. A successful modular product can assist the reconfiguration of products, while reducing the lead-time of design and manufacturing and improving the ability for upgrading, maintenance, customization and recycling. This paper presents a new modular design method called the House Of Modular Enhancement (HOME) for product redesign. Information from various aspects of the product design, including functional requirements, product architecture and life cycle requirements, is incorporated in the method to help ensure that a modularized product would achieve the objectives. The HOME method has been implemented in a software system. A case study will be presented to illustrate the HOME method and the software.


Author(s):  
N. Narikawa ◽  
T. Sato ◽  
N. Sasaki

Abstract This paper gives an overview of an integrated and intelligent database system for a plant engineering framework. We have integrated existing two-dimensional (2D) CAD systems, a three-dimensional (3D) CAD system, and a relational database system which stores engineering information such as design conditions, maintenance histories, and inherent properties. By integrating these systems, the infrastructure for concurrent engineering has been realized. As for design knowledge, we treat object-oriented programming as a useful knowledge representation method. We analyze the plant structure and functional requirements of the system, and then represented them by using the hierarchical Class structure. Design knowledge accompanies the Class, so we represent it using Method. As a design automation system, we develop an automated design check system. This is implemented by using the Common Lisp Object System. These systems are the main parts of the plant engineering framework, and are utilized in the practical design. We intend to develop a mechanical/electronic design framework using the same approach.


2020 ◽  
Vol 10 (5) ◽  
pp. 1668 ◽  
Author(s):  
Pavan Kumar B. N. ◽  
Adithya Balasubramanyam ◽  
Ashok Kumar Patil ◽  
Chethana B. ◽  
Young Ho Chai

Over the years, gaze input modality has been an easy and demanding human–computer interaction (HCI) method for various applications. The research of gaze-based interactive applications has advanced considerably, as HCIs are no longer constrained to traditional input devices. In this paper, we propose a novel immersive eye-gaze-guided camera (called GazeGuide) that can seamlessly control the movements of a camera mounted on an unmanned aerial vehicle (UAV) from the eye-gaze of a remote user. The video stream captured by the camera is fed into a head-mounted display (HMD) with a binocular eye tracker. The user’s eye-gaze is the sole input modality to maneuver the camera. A user study was conducted considering the static and moving targets of interest in a three-dimensional (3D) space to evaluate the proposed framework. GazeGuide was compared with a state-of-the-art input modality remote controller. The qualitative and quantitative results showed that the proposed GazeGuide performed significantly better than the remote controller.


Sign in / Sign up

Export Citation Format

Share Document