Integrated and Intelligent Database Systems for Plant Engineering Framework

Author(s):  
N. Narikawa ◽  
T. Sato ◽  
N. Sasaki

Abstract This paper gives an overview of an integrated and intelligent database system for a plant engineering framework. We have integrated existing two-dimensional (2D) CAD systems, a three-dimensional (3D) CAD system, and a relational database system which stores engineering information such as design conditions, maintenance histories, and inherent properties. By integrating these systems, the infrastructure for concurrent engineering has been realized. As for design knowledge, we treat object-oriented programming as a useful knowledge representation method. We analyze the plant structure and functional requirements of the system, and then represented them by using the hierarchical Class structure. Design knowledge accompanies the Class, so we represent it using Method. As a design automation system, we develop an automated design check system. This is implemented by using the Common Lisp Object System. These systems are the main parts of the plant engineering framework, and are utilized in the practical design. We intend to develop a mechanical/electronic design framework using the same approach.

Author(s):  
N. Narikawa ◽  
T. Kuroiwa ◽  
T. Fujinuma ◽  
S. Sekimoto

Abstract This paper gives an overview of virtual enginecring (VE) system for electromechanical products. To reduce design costs and to manufacture high-quality products, it is well known that concurrent engineering (CE) is very efficient approach. Three-dimensional (3D) CAD system and engineering database system are essential components of CE. VE system is an environment to realize CE. By creating 3D models in a computer and performing some simulations such as mechanical, electronic, software simulation and integrated simulations, it is possible to estimate functions, assemblability, manufacturability and so on, without making prototype models. In this paper, we outline the VE system and mainly discuss the engineering database system which makes an important role of the VE system. This system is developed by applying the object oriented technology.


Author(s):  
Ari Heikkinen ◽  
Tapio Korpela ◽  
Tatu Leinonen

Abstract The Laboratory of Machine Design of the University of Oulu has defined and implemented a design and manufacturing system for a gear manufacturer in co-operation with the company’s own staff. The parts of gear train, such as shafts and gear wheels, are designed by an application program included in a two-dimensional system and the gear housing is designed by a commercial three-dimensional feature-based system. A shaft design and manufacturing system has been discussed in previous papers produced in connection with this project (Korpela, T., et al. 1995, Heikkinen, A., et al. 1996). The tool used for gear housing design and manufacturing have been tested during the past year, and experiences with this CAD system are recounted here. It has been found that the design features which implement the functional requirements of gear construction are different from the features which support the manufacturing processes.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1429-1434
Author(s):  
Qi Wang ◽  
Jian Ming Wang

To estimate the precise mechanical properties of the three-dimensional (3D) braided composite, a geometric study is needed. Owing to the complexity of the yarn paths inside the preform, the geometric modeling for 3D braided composite is always time consuming. In this paper, an efficient method, namely preform boundary reflection (PBR) method, is proposed for motion model construction in geometric study. Furthermore, the CAD simulation system was developed for integral geometric descriptions of 3D braided preform with different parameters. Compared with the traditional method, the novel method significantly simplifies the simulation process without affecting the precision of geometric structure. As a result, the structure design for composite preform is effectively accelerated. The new method establishes the foundation of microstructure and mechanical properties analysis for the preforms with complex geometric structures.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2338
Author(s):  
Sofia Agostinelli ◽  
Fabrizio Cumo ◽  
Giambattista Guidi ◽  
Claudio Tomazzoli

The research explores the potential of digital-twin-based methods and approaches aimed at achieving an intelligent optimization and automation system for energy management of a residential district through the use of three-dimensional data model integrated with Internet of Things, artificial intelligence and machine learning. The case study is focused on Rinascimento III in Rome, an area consisting of 16 eight-floor buildings with 216 apartment units powered by 70% of self-renewable energy. The combined use of integrated dynamic analysis algorithms has allowed the evaluation of different scenarios of energy efficiency intervention aimed at achieving a virtuous energy management of the complex, keeping the actual internal comfort and climate conditions. Meanwhile, the objective is also to plan and deploy a cost-effective IT (information technology) infrastructure able to provide reliable data using edge-computing paradigm. Therefore, the developed methodology led to the evaluation of the effectiveness and efficiency of integrative systems for renewable energy production from solar energy necessary to raise the threshold of self-produced energy, meeting the nZEB (near zero energy buildings) requirements.


2003 ◽  
Vol 8 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Wolfgang H Stuppy ◽  
Jessica A Maisano ◽  
Matthew W Colbert ◽  
Paula J Rudall ◽  
Timothy B Rowe

2013 ◽  
Vol 546 ◽  
pp. 93-95
Author(s):  
Fang Xie ◽  
You Jun Wang ◽  
Qiu Juan Lv ◽  
Hai Xia Du ◽  
Yan Jiao Li

The traditional engineering graphics model room could not be effective use by space, time and other factors of limitation. In view of the above questions, network engineering graphics model room was built with VRML software as a platform. This technology made use of PRO/E, Dreamweaver, Java software in order to transmission stability, the three dimensional visualization and strong interactivity and functional requirements. It has the important practical significance in remote education and teaching.


Author(s):  
Ketki Lichade ◽  
Yizhou Jiang ◽  
Yayue Pan

Abstract Recently, many studies have investigated additive manufacturing of hierarchical surfaces with high surface area/volume (SA/V) ratios, and their performance has been characterized for applications in next-generation functional devices. Despite recent advances, it remains challenging to design and manufacture high SA/V ratio structures with desired functionalities. In this study, we established the complex correlations among the SA/V ratio, surface structure geometry, functionality, and manufacturability in the Two-Photon Polymerization (TPP) process. Inspired by numerous natural structures, we proposed a 3-level hierarchical structure design along with the mathematical modeling of the SA/V ratio. Geometric and manufacturing constraints were modeled to create well-defined three-dimensional hierarchically structured surfaces with a high accuracy. A process flowchart was developed to design the proposed surface structures to achieve the target functionality, SA/V ratio, and geometric accuracy. Surfaces with varied SA/V ratios and hierarchy levels were designed and printed. The wettability and antireflection properties of the fabricated surfaces were characterized. It was observed that the wetting and antireflection properties of the 3-level design could be easily tailored by adjusting the design parameter settings and hierarchy levels. Furthermore, the proposed surface structure could change a naturally-hydrophilic surface to near-superhydrophobic. Geometrical light trapping effects were enabled and the antireflection property could be significantly enhanced (>80% less reflection) by the proposed hierarchical surface structures. Experimental results implied the great potential of the proposed surface structures for various applications such as microfluidics, optics, energy, and interfaces.


Author(s):  
Noboru Narikawa ◽  
Kazuo Takahashi

Abstract This paper gives an overview of a collaborative design system (CDS) for electromechanical products. To reduce design costs and to manufacture high-quality products, it is well known that concurrent engineering (CE) is a very efficient approach. Three-dimensional (3D) CAD system and engineering database system are essential components of CE. The CDS is an environment to realize CE. By creating 3D models in a computer and performing some simulations such as mechanical, electronic, software simulation and integrated simulations, it is possible to estimate functions, assemblability, manufacturability and so on, before making prototype models. In this paper, we outline the CDS and mainly discuss the total information management system (TIMS) which makes an important role of the CDS. This paper describes the implementation experience of some functions of the TIMS.


2021 ◽  
Author(s):  
Wen Yang ◽  
Lun Zhou ◽  
Junrong Qiu ◽  
Yun Tai

Abstract Three dimensional PWR-core analysis code CORAL is developed by Wuhan Second Ship Design and Research Institute. This code provides basic functions including three-dimensional power distribution, fine power reconstruction, fuel temperature distribution, critical search, control rod worth, reactivity coefficients, burnup and nuclide density distribution, etc. CORAL employ nodal expansion method to solve neutron diffusion equation, and the least square method is used to achieve few group constants, and sub-channel model and one-dimensional heat transfer is used to calculate fuel temperature and coolant density distribution, and burnup distribution and nuclide nuclear density could be obtained by solving macro-depletion and micro-depletion equation. The CORAL code is convenient to update and maintain in consider of modular, object-oriented programming technology. In order to analyze the computational accuracy of the CORAL code in small PWR-core and its capability to deal with heterogeneous, calculation analysis are carried out based on the material and geometry parameters of the SMART core. The core has 57 fuel assemblies, with 8, 20 or 24 gadolinium rods arranged in the fuel assemblies. In this paper, a quantitative comparison and analysis of the small PWR problem calculation results are carried out. Numerical results, including effective multiplication factor, assembly power distribution and pin power distribution, all agree well with the calculation results of OpenMC or Bamboo at both hot zero-power (HZP) and hot full-power (HFP) conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Jinjin Liu ◽  
Kai Liu ◽  
Tong Zhao ◽  
Zhuofei Xu

A three-dimensional numerical simulation combining discrete phase method (DPM) and porous media based on the theory of Euler-Lagrange has been employed to investigate particles distribution in a separator. The DPM model is applied to monitor the movement of individual particles and calculate the contact force between them in the separator. The simulation results display the migration feature of dust particles over time and the distribution of particles on the surface element in porous region and reveal that the flow field influences the distribution uniformity of the particles in porous area directly. Based on the analysis, the structure of separator is optimized by the Taguchi method. An orthogonal relation motion has been established. The optimal solution is achieved by the calculation of the weight relationship. The calculated optimal structure is evaluated by the signal to noise (SNR). The result reveals that the values of SNR in case are eligible. As a result, the research of the separator points out a useful and improvable method for the parameter optimization of structure design.


Sign in / Sign up

Export Citation Format

Share Document