Power–Velocity Process Design Charts for Powder Bed Additive Manufacturing

2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Daniel R. Clymer ◽  
Jonathan Cagan ◽  
Jack Beuth

A current issue in metal-based additive manufacturing (AM) is achieving consistent, desired process outcomes in manufactured parts. When process outcomes such as strength, density, or precision need to meet certain specifications, changes in process variable selection can be made to meet these requirements. However, the changes required to achieve a better part performance may not be intuitive, particularly because process variable changes can simultaneously improve some outcomes while worsening others. There is great potential to design the additive manufacturing process, tailoring process variables based on user requirements for a given part. In this work, the tradeoffs between multiple process outcomes are formalized and the design problem is explored throughout the design space of process variables. Based on user input for each process outcome considered, P–V (power–velocity) process design charts are introduced, which map the process space and identify the best combination of process variables to achieve a user's desired outcome.

2021 ◽  
Vol 194 ◽  
pp. 110415
Author(s):  
Vera E. Küng ◽  
Robert Scherr ◽  
Matthias Markl ◽  
Carolin Körner

2021 ◽  
Vol 1 ◽  
pp. 231-240
Author(s):  
Laura Wirths ◽  
Matthias Bleckmann ◽  
Kristin Paetzold

AbstractAdditive Manufacturing technologies are based on a layer-by-layer build-up. This offers the possibility to design complex geometries or to integrate functionalities in the part. Nevertheless, limitations given by the manufacturing process apply to the geometric design freedom. These limitations are often unknown due to a lack of knowledge of the cause-effect relationships of the process. Currently, this leads to many iterations until the final part fulfils its functionality. Particularly for small batch sizes, producing the part at the first attempt is very important. In this study, a structured approach to reduce the design iterations is presented. Therefore, the cause-effect relationships are systematically established and analysed in detail. Based on this knowledge, design guidelines can be derived. These guidelines consider process limitations and help to reduce the iterations for the final part production. In order to illustrate the approach, the spare parts production via laser powder bed fusion is used as an example.


2021 ◽  
Vol 1 ◽  
pp. 1657-1666
Author(s):  
Joaquin Montero ◽  
Sebastian Weber ◽  
Christoph Petroll ◽  
Stefan Brenner ◽  
Matthias Bleckmann ◽  
...  

AbstractCommercially available metal Laser Powder Bed Fusion (L-PBF) systems are steadily evolving. Thus, design limitations narrow and the diversity of achievable geometries widens. This progress leads researchers to create innovative benchmarks to understand the new system capabilities. Thereby, designers can update their knowledge base in design for additive manufacturing (DfAM). To date, there are plenty of geometrical benchmarks that seek to develop generic test artefacts. Still, they are often complex to measure, and the information they deliver may not be relevant to some designers. This article proposes a geometrical benchmarking approach for metal L-PBF systems based on the designer needs. Furthermore, Geometric Dimensioning and Tolerancing (GD&T) characteristics enhance the approach. A practical use-case is presented, consisting of developing, manufacturing, and measuring a meaningful and straightforward geometric test artefact. Moreover, optical measuring systems are used to create a tailored uncertainty map for benchmarking two different L-PBF systems.


Sign in / Sign up

Export Citation Format

Share Document