ceramic binder
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 16)

H-INDEX

6
(FIVE YEARS 2)

2022 ◽  
pp. 93-102
Author(s):  
Do Duc Trung ◽  
Le Dang Ha

In this article, a study on intermittent surface grinding using aluminum oxide grinding wheel with ceramic binder is presented. The testing material is 20XH3A steel (GOST standard – Russian Federation). The testing sample has been sawn 6 grooves, with the width of each groove of 10 mm, the grooves are evenly distributed on the circumference of sample. The testing sample resembles a splined shaft. An experimental matrix of nine experiments has been built by Taguchi method, in which abrasive grain size, workpiece speed, feed rate and depth of cut were selected as input variables. At each experiment, surface roughness (Ra) and roundness error (RE) have been measured. Experimental results show that the aluminum oxide and ceramic binder grinding wheels are perfectly suitable for grinding intermittent surface of 20XH3A steel. Data Envelopment Analysis based Ranking (DEAR) method has been used to solve the multi-objective optimization problem. The results also showed that in order to simultaneously ensure minimum surface roughness and RE, abrasive grain size is 80 mesh, workpiece speed is 910 rpm, feed rate is 0.05 mm/rev and depth of cut is 0.01 mm. If evaluating the grinding process through two criteria including surface roughness and RE, depth of cut is the parameter having the greatest effect on the grinding process, followed by the influence of feed rate, workpiece speed, and abrasive grain is the parameter having the least effect on the grinding process. In addition, the effect of each input parameter on each output parameter has also been analyzed, and orientations for further works have also been recommended in this article


2021 ◽  
Vol 11 (4) ◽  
pp. 1783
Author(s):  
Ming-Yi Tsai ◽  
Kun-Ying Li ◽  
Sun-Yu Ji

In this study, special ceramic grinding plates impregnated with diamond grit and other abrasives, as well as self-made lapping plates, were used to prepare the surface of single-crystal silicon carbide (SiC) wafers. This novel approach enhanced the process and reduced the final chemical mechanical planarization (CMP) polishing time. Two different grinding plates with pads impregnated with mixed abrasives were prepared: one with self-modified diamond + SiC and a ceramic binder and one with self-modified diamond + SiO2 + Al2O3 + SiC and a ceramic binder. The surface properties and removal rate of the SiC substrate were investigated and a comparison with the traditional method was conducted. The experimental results showed that the material removal rate (MRR) was higher for the SiC substrate with the mixed abrasive lapping plate than for the traditional method. The grinding wear rate could be reduced by 31.6%. The surface roughness of the samples polished using the diamond-impregnated lapping plate was markedly better than that of the samples polished using the copper plate. However, while the surface finish was better and the grinding efficiency was high, the wear rate of the mixed abrasive-impregnated polishing plates was high. This was a clear indication that this novel method was effective and could be used for SiC grinding and lapping.


2020 ◽  
Vol 36 ◽  
pp. 101542 ◽  
Author(s):  
Guanxiong Miao ◽  
Wenchao Du ◽  
Mohammadamin Moghadasi ◽  
Zhijian Pei ◽  
Chao Ma

2020 ◽  
Vol 60 (2) ◽  
pp. 47-52
Author(s):  
Barbara Staniewicz-Brudnik ◽  
Paweł Figiel ◽  
Grzegorz Skrabalak ◽  
Małgorzata Karolus

The characteristics of abrasive tools (the type of grinding wheel, granulation of the super hard grain, type of structure, hardness, and the type of binder) contain information on the type of supporting body materials used (e.g., dural, ceramic, steel). In this work, diamond wheels were obtained on ceramic supporting bodies, containing a sintered mixture of white alumina 99A granulation F320, green silicon carbide 99A granulation F320, and binder Ba23 bis, together with modifiers. The mechanical properties (hardness, bending strength) of ceramic supporting bodies were tested. The structure of the phase boundary of the ceramic supporting body–abrasive grinding tool was analyzed on a BEC (backscattered electron composition) image by using SEM (Scanning Electron Microscopy). It was found that the hardness of the supporting body was slightly lower (70–75 HRB) than the diamond wheels (76–81 HRB). The bending strength of the supporting bodies was high (85 ±2 MPa). The BEC image from the scanning microscope did not show a sharp transition between the ceramic supporting body and the grinding wheel. Preliminary operational tests showed significant improvement in grinding wheel efficiency in comparison to diamond tools with the same ceramic binder on a duralumin supporting body during machining of G30 sintered carbide bush.


2020 ◽  
Vol 46 (10) ◽  
pp. 16966-16972 ◽  
Author(s):  
Mohammadamin Moghadasi ◽  
Wenchao Du ◽  
Ming Li ◽  
Zhijian Pei ◽  
Chao Ma

Author(s):  
O. Gavshina ◽  
S. Yashkina ◽  
A. Yashkin ◽  
V. Doroganov ◽  
I. Moreva

the paper is devoted to a full-scale study of corundum modifying dispersed additives (reactive, tabular, dispersing alumina) and artificial ceramic binder, their impact on high-alumina cement microstructure and setting time. Artificial ceramic binders are characterized by similar chemical, phase and grain composition with modifying corundum additives and characterized by the presence of particles less than 100 nm (up to 0.5%). The studied materials are finely dispersed polyfractional systems from 0.1 to 13 μm with a prevailing grading fraction of 2-10 μm. In this case, dispersing and reactive alumina are more coarse. Using the microscopy method it was established that the corundum additives increase packing density of high-alumina cement samples, especially with artificial ceramic binder addition. Studies of dispersed additives effect on the setting time of cement was conducted. It is established that the adding of artificial ceramic binder or dispersing alumina at 0.5% is speeding up the initial setting, but a further increasing of the additive content does not affect this indicator. The maximum reduction of setting time is caused by the introduction of 5% tabular alumina.


Sign in / Sign up

Export Citation Format

Share Document