Characterization of a Wind Generation System for Use in Offshore Wind Turbine Development

Author(s):  
Raul Urbina ◽  
James M. Newton ◽  
Matthew P. Cameron ◽  
Richard W. Kimball ◽  
Andrew J. Goupee ◽  
...  

Environmental conditions created by winds blowing oblique to the direction of the waves are necessary to conduct some survivability tests of offshore wind turbines. However, some facilities lack the capability to generate quality waves at a wide range of angles. Thus, having a wind generation system that can be rotated makes generating winds that blow oblique to the waves possible during survivability tests. Rotating the wind generation system may disrupt the flow generated by the fans because of the effect of adjacent walls. Closed or semiclosed wind tunnels may eliminate the issue of wall effects, but these types of wind tunnels could be difficult to position within a wave basin. In this work, a prototype wind generation system that can be adapted for offshore wind turbine testing is investigated. The wind generation system presented in this work has a return that minimizes the effect that the walls could potentially have on the fans. This study characterizes the configuration of a wind generation system using measurements of the velocity field, detailing mean velocities, flow directionality, and turbulence intensities. Measurements were taken downstream to evaluate the expected area of turbine operation and the shear zone. The dataset has aided in the identification of conditions that could potentially prevent the production of the desired flows. Therefore, this work provides a useful dataset that could be used in the design of wind generation systems and in the evaluation of the benefits of recirculating wind generation systems for offshore wind turbine research.


Author(s):  
Sarah McElman ◽  
Arjen Koop ◽  
Erik-Jan de Ridder ◽  
Andrew Goupee

The development of a new wind-wave facility for offshore floating wind turbine testing can be complex; outfitting existing basins with wind generation capacity can be even more of a challenge. We present the simulation, design, and construction of a wind generation system for use in a modified existing basin at MARIN for the purpose of new concept testing for floating offshore wind turbines. Computational fluid dynamics simulations using MARIN’s ReFRESCO software are carried out for wind generator design and flow characterization within the basin. Modifications to improve the wind flow quality from the designed configuration, with the aid of CFD simulations, are discussed for the constructed system. Measurements on the completed wind generation system show reasonable spatial uniformity of the flow and turbulence intensities similar to atmospheric wind flows. Finally, suggestions for the construction of similar testing facilities are provided based on lessons learned from this retrofit project.



2019 ◽  
Vol 2019.25 (0) ◽  
pp. 18E15
Author(s):  
Yusuke MARUYAMA ◽  
Hironori FUJII ◽  
Hiroshi OHKUBO ◽  
Hiroki ENDOU ◽  
Ysuyoshi SATOU ◽  
...  


Author(s):  
Tomonobu Senjyu ◽  
Yasutaka Ochi ◽  
Yasuaki Kikunaga ◽  
Motoki Tokudome ◽  
Endusa Billy Muhando ◽  
...  


2011 ◽  
Vol 1 (32) ◽  
pp. 25
Author(s):  
Ray-Yeng Yang ◽  
Hsin-Hung Chen ◽  
Hwung-Hweng Hwung ◽  
Wen-Pin Jiang ◽  
Nian-Tzu Wu

A 1:36 scale model tests were carried out in the Medium Wave Flume (MWF) and Near-shore Wave Basin (NSWB) at the Tainan Hydraulics Laboratory (THL) with the jacket type offshore wind turbine foundation located in the test area. The loading of typhoon wave with current on the jacket type offshore wind turbine foundation was investigated in the MWF with fixed bed experiment. Meanwhile, the scour around the jacket type offshore wind turbine foundation exposed to wave and current was conducted in the NSWB with the moveable bed experiment. Two locations (water depth 12m and 16m) of the foundations are separately simulated in this study. Based on the analysis from the former NSWB experimental results, the suitable scour protection of a four-layer work around the foundation is also proposed to the impact of scour. Finally, a four-layer scour protection is tested and found to be effective in preventing scour around jacket type foundation of offshore wind turbines at water depth 12m and 16m.



Author(s):  
Xinran Ji ◽  
Daoru Wang

Abstract Real sea waves are multidirectional, but most of researches are focused on the unidirectional wave. Special to the numerical wave basin based on OpenFOAM to simulate the propagation of multidirectional random wave and its interaction with structure has the insufficient of large amount of calculation, to overcome this problem, a one-way coupling model is established based on the potential theory and OpenFOAM wave basin, and the amount of calculation is reduced and the computational efficiency is improved. Base on the coupling model, the multidirectional random waves and its interaction with a large-scale offshore wind turbine foundation are simulated. In the outer domain, the multidirectional random wave is generated by the potential theory quickly. The interaction of multidirectional waves with the offshore wind turbine foundation is simulated in the inner domain by solving the Navier-Stokes equation. The result shows that the wave directionality has a significant effect on the interaction of multidirectional irregular waves with cylinder.



Author(s):  
B. Vidhya ◽  
K. N. Srinivas

<p>This research work, titled Small Scale Wind Generation System, reported in part I and part II, proposes modeling, analysis and control of a small scale wind energy conversion system employing a direct driven Flux Reversal Generator (FRG) connected to the micro grid through a Quasi-Z-Source Inverter (QZSI). The application of QZSI using FRG to feed micro grid is proposed for the first time in this research work. The QZSI can realize buck/boost, inversion and power conditioning in a single stage with improved reliability. Also it features a wide range of voltage gain which is suitable for applications in wind systems, due to the fact that the wind generator output varies widely with wind velocity. In addition, the modified Space Vector PWM (SVPWM) technique is proposed in this paper to satisfy the shoot-through characteristic of QZSI. This also adds to the contribution of this research work. In this part I of this full research, modelling of the small scale FRG for wind system using Finite Element Analysis (FEA) is presented. The major parameter of FRG viz, voltage, current, torque and power are analyzed, validated and then represented in d-q model. The simulation results are validated with the analytical results. An experimental set-up to run the full procedure reported in this paper. These results form the basis for part II of this research work.</p>



2020 ◽  
Vol 14 (15) ◽  
pp. 2916-2923 ◽  
Author(s):  
Omid Beik ◽  
Ahmad S. Al-Adsani


2012 ◽  
Author(s):  
Richard W. Kimball ◽  
Andrew J. Goupee ◽  
Alexander J. Coulling ◽  
Habib J. Dahger

Results of wave basin tests on three 1/50th scale floating wind turbine systems tested at the MARIN model basin are presented. The tests included a fully functional model wind turbine and a novel wind machine to produce swirl free inflow at a turbulence intensity of about 5%. Simultaneous stochastic wind and waves as well as multidirectional sea conditions were tested. This paper presents the experimental work as well as validation comparisons to NREL’s FAST floating offshore wind turbine dynamic modeling code. The paper also discusses the testing methodology and presents means to more closely match full scale performance at the low-Reynolds number operation regimes of the model test. Analyses presented include response amplitude operator and power spectral density plots for the spar-buoy, tensionleg platform and semi-submersible designs. The results presented for the systems highlight both turbine response effects and second-order wave diffraction forcing effects.



Author(s):  
Tomoaki Utsunomiya ◽  
Tomoki Sato ◽  
Hidekazu Matsukuma ◽  
Kiyokazu Yago

In this paper, motion of a SPAR-type floating offshore wind turbine (FOWT) subjected to wave loadings is examined. The proposed prototype FOWT mounts a 2MW wind turbine of down-wind type, whose rotor diameter is 80m and hub-height 55m. The SPAR-type floating foundation measures 60m in draft, having circular sections whose diameter is 12m at the lower part, 8.4m at the middle (main) part and 4.8m at the upper part. The FOWT is to be moored by a conventional anchor-chain system. In order to design such a FOWT system, it is essential to predict the motion of the FOWT subjected to environmental loadings such as irregular waves, turbulent winds, currents, etc. In this paper, the motion of the FOWT subjected to regular and irregular waves is examined together with the application of steady horizontal force corresponding to steady wind. The wave-tank experiment is made in the deep sea wave-basin at NMRI (National Maritime Research Institute), using a 1/22.5 scale model of the prototype FOWT. The experimental results are compared with the numerical simulation results for validation of the simulation method.



Sign in / Sign up

Export Citation Format

Share Document