Experimental Validation for Motion of a SPAR-Type Floating Offshore Wind Turbine Using 1/22.5 Scale Model

Author(s):  
Tomoaki Utsunomiya ◽  
Tomoki Sato ◽  
Hidekazu Matsukuma ◽  
Kiyokazu Yago

In this paper, motion of a SPAR-type floating offshore wind turbine (FOWT) subjected to wave loadings is examined. The proposed prototype FOWT mounts a 2MW wind turbine of down-wind type, whose rotor diameter is 80m and hub-height 55m. The SPAR-type floating foundation measures 60m in draft, having circular sections whose diameter is 12m at the lower part, 8.4m at the middle (main) part and 4.8m at the upper part. The FOWT is to be moored by a conventional anchor-chain system. In order to design such a FOWT system, it is essential to predict the motion of the FOWT subjected to environmental loadings such as irregular waves, turbulent winds, currents, etc. In this paper, the motion of the FOWT subjected to regular and irregular waves is examined together with the application of steady horizontal force corresponding to steady wind. The wave-tank experiment is made in the deep sea wave-basin at NMRI (National Maritime Research Institute), using a 1/22.5 scale model of the prototype FOWT. The experimental results are compared with the numerical simulation results for validation of the simulation method.

Author(s):  
Zhi Zong ◽  
Guanqing Hu ◽  
Yichen Jiang ◽  
Li Zou

Abstract To predict the short-term motion responses of floating offshore wind turbine under extreme wind-wave excitation, a numerical model based on the two-phase flow finite volume method was developed. In this paper, uni-directional irregular waves composed of 100 cosine waves with equal frequency interval were simulated by the wave forcing technique, resulting in the measured spectrum in accordance with the target spectrum. Then, a 100-seconds wave segment containing the maximum wave height was selected for fully coupled dynamic analysis of the OC4-DeepCwind system in CFD, and the results were compared with those of FAST under the same wind and wave sea state. It was found that the motion responses of heave and pitch motion responses predicted by two methods agree well. The second-order slow drift force generated in CFD led to the difference in surge motion. The predicted sway, roll, and yaw motions by these two methods were also compared. In addition, significant differences between two methods’ predictions on mooring tension were found.


2011 ◽  
Vol 1 (32) ◽  
pp. 25
Author(s):  
Ray-Yeng Yang ◽  
Hsin-Hung Chen ◽  
Hwung-Hweng Hwung ◽  
Wen-Pin Jiang ◽  
Nian-Tzu Wu

A 1:36 scale model tests were carried out in the Medium Wave Flume (MWF) and Near-shore Wave Basin (NSWB) at the Tainan Hydraulics Laboratory (THL) with the jacket type offshore wind turbine foundation located in the test area. The loading of typhoon wave with current on the jacket type offshore wind turbine foundation was investigated in the MWF with fixed bed experiment. Meanwhile, the scour around the jacket type offshore wind turbine foundation exposed to wave and current was conducted in the NSWB with the moveable bed experiment. Two locations (water depth 12m and 16m) of the foundations are separately simulated in this study. Based on the analysis from the former NSWB experimental results, the suitable scour protection of a four-layer work around the foundation is also proposed to the impact of scour. Finally, a four-layer scour protection is tested and found to be effective in preventing scour around jacket type foundation of offshore wind turbines at water depth 12m and 16m.


Author(s):  
Federico Taruffi ◽  
Simone Di Carlo ◽  
Sara Muggiasca ◽  
Alessandro Fontanella

Abstract This paper deals with the numerical design of a floating offshore wind turbine outdoor large-scale prototype based on the DTU 10MW. The objective of this work is to develop a numerical simulation environment for the design of an outdoor scaled prototype. The numerical model is realized coupling the preliminary designed Blue Growth Farm large-scale turbine model with a traditional floater, the OC3 spar buoy. The numerical model is used to evaluate the loads associated with the wind turbine when combined to a floating foundation, with the focus on the coupling between the dynamics of the control system and the one of the floating platform. In addition to this, also the consistency of loads on crucial turbine components is an interesting test bench for the evaluation of the dynamical effects and drives the final design of the physical model.


2012 ◽  
Author(s):  
Richard W. Kimball ◽  
Andrew J. Goupee ◽  
Alexander J. Coulling ◽  
Habib J. Dahger

Results of wave basin tests on three 1/50th scale floating wind turbine systems tested at the MARIN model basin are presented. The tests included a fully functional model wind turbine and a novel wind machine to produce swirl free inflow at a turbulence intensity of about 5%. Simultaneous stochastic wind and waves as well as multidirectional sea conditions were tested. This paper presents the experimental work as well as validation comparisons to NREL’s FAST floating offshore wind turbine dynamic modeling code. The paper also discusses the testing methodology and presents means to more closely match full scale performance at the low-Reynolds number operation regimes of the model test. Analyses presented include response amplitude operator and power spectral density plots for the spar-buoy, tensionleg platform and semi-submersible designs. The results presented for the systems highlight both turbine response effects and second-order wave diffraction forcing effects.


Author(s):  
Tomoaki Utsunomiya ◽  
Hidekazu Matsukuma ◽  
Shintaro Minoura ◽  
Kiyohiko Ko ◽  
Hideki Hamamura ◽  
...  

This study aims at development of a cost-effective, floating offshore wind turbine. The prototype model considered herein is composed of (1) 2-MW horizontal-axis wind turbine (HAWT) of downwind type, (2) steel monotower with 55-m hub height above sea level, (3) steel-prestressed concrete (PC) hybrid SPAR-type foundation with 70-m draft, and (4) catenary mooring system using anchor chains. In order to demonstrate the feasibility of the concept, an at-sea experiment using a 1/10-scale model of the prototype has been made. The demonstrative experiment includes (1) construction of the hybrid SPAR foundation using PC and steel, the same as the prototype; (2) dry-towing and installation to the at-sea site at 30-m distance from the quay of the Sasebo shipbuilding yard; (3) generating electric power using a 1 kW HAWT; and (4) removal from the site. During the at-sea experiment, wind speed, wind direction, tidal height, wave height, motion of the SPAR, tension in a mooring chain, and strains in the tower and the SPAR foundation have been measured. Motion of the SPAR has been numerically simulated and compared with the measured values, where basically good agreement is observed.


2013 ◽  
Vol 477-478 ◽  
pp. 109-113
Author(s):  
Bin Bin Lai ◽  
Cheng Bi Zhao ◽  
Xiao Ming Chen ◽  
You Hong Tang ◽  
Wei Lin

With the mature of floating offshore wind turbine technology, floating wind farm building in the deep sea becomes an inevitable trend. In the design of floating offshore wind turbine, the change of structural form is the main factor influencing hydrodynamic performance. This research, taking a typical sea condition in China's coastal areas as the object of study, designs a novel semi-submersible foundation for NREL 5 MW offshore wind turbine in 200 m deep water. In the design, deep-draft buoys structures are used to reduce the force of waves on the floating offshore, while damping structures are used to optimize the stability of wind turbine and reduce the heave amplitude. By means of numerical simulation method, the hydrodynamic performance of semi-submersible support is studied. Meanwhile, the response amplitude operators (RAOs) and the wave response motions of platform are calculated. The results in time domain indicate that the floating wind turbine system can keep safe and survive in the harsh sea condition, coupling wind, waves and currents. It is showed that the designed semi-submersible support of platform has excellent hydrodynamic performance. This change of structural form may serve as a reference on the development of offshore wind floating platform.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Hannah L. Allen ◽  
Andrew J. Goupee ◽  
Anthony M. Viselli ◽  
Christopher K. Allen ◽  
Habib J. Dagher

Abstract Floating offshore wind turbine (FOWT) hull technologies are evolving rapidly with many technically viable designs. However, a commercially dominant architecture has yet to emerge. Early hull designs including semisubmersible, spar, and tension leg platforms were largely derived from offshore oil and gas technologies, but recent developments in the commercial application and optimization of FOWTs have resulted in a number of unique, FOWT-specific hull configurations. One hull design of interest includes the application of a moonpool to aid in mitigating platform motion in the presence of waves. A version of this annular hull has been deployed in France and Japan. In this paper, a 6-MW version of an annular hull is studied through experimental model testing and numerical analysis. The primary portion of this work involves testing a 1/100th-scale model in the Harold Alfond Wind Wave Ocean Engineering Laboratory at the University of Maine. A secondary component of this work investigates the capability of ANSYS aqwa, a typical commercial hydrodynamic software, to recreate the wave-induced motion of a FOWT hull containing a moonpool. An additional secondary component of this study compares the wave-only performance of the annular hull to experimental data obtained for the DeepCwind semisubmersible, spar, and tension leg platform to provide context for the measured response. The results obtained show that ANSYS aqwa can adequately predict the gross response of the annular hull motion and that the moonpool design tested often exhibits greater motion than the systems tested during the DeepCwind campaign.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2608
Author(s):  
Hyeonjeong Ahn ◽  
Hyunkyoung Shin

Floating offshore wind turbines (FOWTs) experience fluctuations in their platforms, owing to the various wave and wind conditions. These fluctuations not only decrease the output of the wind power generation system, but also increase the fatigue load of the structure and various equipment mounted on it. Therefore, when designing FOWTs, efficient performance with respect to waves and other external conditions must be ensured. In this study, a model test was performed with a 10 MW floating offshore wind turbine. The model test was performed by scaling down a 10 MW FOWT model that was designed with reference to a 5 MW wind turbine and a semisubmersible platform by the National Renewable Energy Laboratory and the DeepCwind project. A scale ratio of 1:90 was used for the model test. The depth of the East Sea was considered as 144 m and, to match the water depth with the geometric similarity of mooring lines, mooring tables were installed. The load cases used in the model test are combined environmental conditions, which are combined uniform wind, regular waves and uniform current. Especially, Model tests with regular waves are especially necessary, because irregular waves are superpositions of regular waves with various periods. Therefore, this study aimed to understand the characteristics of the FOWTs caused by regular waves of various periods. Furthermore, in this model test, the effect of current was investigated using the current data of the East Sea. The results obtained through the model tests were the response amplitude operator (RAO) and the effective RAO for a six degrees-of-freedom motion. The results obtained from the model tests were compared with those obtained using the numerical simulation. The purpose of this paper is to predict the response of the entire system observed in model tests through simulation.


2021 ◽  
Vol 929 ◽  
Author(s):  
Jana Orszaghova ◽  
Paul H. Taylor ◽  
Hugh A. Wolgamot ◽  
Freddy J. Madsen ◽  
Antonio M. Pegalajar-Jurado ◽  
...  

The nonlinear hydrodynamic responses of a novel spar-type soft-moored floating offshore wind turbine are investigated via analysis of motion measurements from a wave-basin campaign. A prototype of the TetraSpar floater, supporting a $1:60$ scale model of the DTU 10 MW reference wind turbine, was subjected to irregular wave forcing (with no wind) and shown to exhibit subharmonic resonant motions, which greatly exceeded the wave-frequency motions. These slow-drift responses are excited nonlinearly, since the rigid-body natural frequencies of the system lie below the incident-wave frequency range. Pitch motion is examined in detail, allowing for identification of different hydrodynamic forcing mechanisms. The resonant response is found to contain odd-harmonic components, in addition to the even harmonics expected a priori and excited by second-order difference-frequency hydrodynamic interactions. Data analysis utilising harmonic separation and signal conditioning suggests that Morison drag excitation or third-order subharmonic potential flow forcing could be at play. In the extreme survival-conditions sea state, the odd resonant responses are identified to be drag-driven. Their importance for the tested floater is appreciable, as their magnitude is comparable to the second-order potential flow effects. Under such severe conditions, the turbine would not be operating, and as such neglecting aerodynamic forcing and motion damping is likely to be reasonable. Additionally, other possible drivers of the resonant pitch response are explored. Both Mathieu-type parametric excitation and wavemaker-driven second-order error waves are found to have negligible influence. However, we note slight contamination of the measurements arising from wave-basin sloshing.


Sign in / Sign up

Export Citation Format

Share Document