Asymptotic Stabilization of Fractional Permanent Magnet Synchronous Motor

Author(s):  
Yuxiang Guo ◽  
Baoli Ma

This paper is mainly concerned with asymptotic stability for a class of fractional-order (FO) nonlinear system with application to stabilization of a fractional permanent magnet synchronous motor (PMSM). First of all, we discuss the stability problem of a class of fractional time-varying systems with nonlinear dynamics. By employing Gronwall–Bellman's inequality, Laplace transform and its inverse transform, and estimate forms of Mittag–Leffler (ML) functions, when the FO belongs to the interval (0, 2), several stability criterions for fractional time-varying system described by Riemann–Liouville's definition is presented. Then, it is generalized to stabilize a FO nonlinear PMSM system. Furthermore, it should be emphasized here that the asymptotic stability and stabilization of Riemann–Liouville type FO linear time invariant system with nonlinear dynamics is proposed for the first time. Besides, some problems about the stability of fractional time-varying systems in existing literatures are pointed out. Finally, numerical simulations are given to show the validness and feasibleness of our obtained stability criterions.

Author(s):  
Da-Ke Gu ◽  
Da-Wei Zhang ◽  
Quan-Zhi Liu

This study investigates a parametric approach to design the proportional-integral (PI) controller for a permanent magnet synchronous motor (PMSM). Based on the solutions of the generalized Sylvester equation, the generally parametric expressions of PI controller and right eigenvector matrix are obtained. By using the parametric approach, the closed-loop system is converted into a linear time-invariant system with an expected eigenstructure. Further, a numerical example is put forward to illustrate the effectiveness and feasibility of the proposed parametric approach.


2020 ◽  
Vol 12 (9) ◽  
pp. 168781402095509
Author(s):  
Da-Ke Gu ◽  
Chao Lu

This paper is concerned with the stability of second-order linear time-varying systems. By utilizing the Lyapunov approach, a generally uniformly asymptotic stability criterion is obtained by adding the system matrices into the quadratic Lyapunov candidate function. In the case of the derivative of the Lyapunov candidate function is semi-positive definite, the stability criterion is also efficient. Based on the proposed results, the systems with uncertain disturbances such as structured independent and structured dependent perturbations are considered. Using the matrix measure and the singular value theory, the bounds of the uncertainties are obtained that guarantee the system uniformly asymptotically stable, while the bounds of state feedback control input are also derived to stabilize the second-order linear time-varying systems. Finally, several numerical examples are given to prove the validity and correctness of the proposed criteria with existing ones.


2012 ◽  
Vol 220-223 ◽  
pp. 1040-1043
Author(s):  
Hong Cui ◽  
You Qing Gao

High-speed permanent magnet synchronous motor (PMSM) is more and more widely applied in high precision processing and high-performance machines. It is very important to research practical control strategy for the stability operation of the high-speed PMSM. The strategy of sensorless grey prediction fuzzy direct torque control (DTC) is proposed which is suitable for high-speed PMSM control system. The method of prediction fuzzy control based on DTC is used to gain the flux, torque and flux oriented angle through the prediction model of the motor parameters. The best control scheme is gained by fuzzy reasoning to overcome the lag on the system making the adjustment process stable and realizing accurate predictive control. Thereby, the dynamic response of the system, anti-disturbance capability and control accuracy can be improved.


2018 ◽  
Vol 41 (8) ◽  
pp. 2352-2364 ◽  
Author(s):  
Arif Iqbal ◽  
Girish Kumar Singh

Owing to the superior properties and stable operation, the Permanent Magnet Synchronous Motor (PMSM) is preferably used in wide industrial applications. But, the stability of motor is found to be dependent on its initial operating condition, showing the chaotic characteristic. Therefore, this paper addresses the chaos control of PMSM by developing four simple but effective controllers, which are mathematically designed by using the principle of Lyapunov’s method for asymptotic global stability. A comparative performance assessment has been carried out for the developed controllers in terms of settling time and peak over shoot. Furthermore, the concept of conventional proportional-integration type controller has been extended to develop two more controllers for chaos control of PMSM. Numerical simulation has been carried out in Matlab environment for performance evaluation of developed controllers. The obtained analytical results have been validated through experimental implementation in real time environment on Multisim/Ultiboard platform.


2018 ◽  
Vol 3 (3) ◽  
pp. 133-142
Author(s):  
Abderrahmen KIRAD ◽  
Said Grouni ◽  
Omar MECHALI

This paper presents a nonlinear backstepping control strategy used to ensure good dynamic behavior, high performance and the stability of the permanent magnet synchronous motor (PMSM). However, this control requires the precise knowledge of certain variables (speed, torque and position) that are difficult to access or sensors require additional mounting space, reduce reliability, increase the cost of the engine, and make maintenance difficult. Thus, an Extended Kalman Filter (EKF) approach is proposed for the estimation of speed and rotor position in the PMSM. The interesting simulation results obtained which are subjected to the load perturbation show very well the efficiency and the good performance of the nonlinear feedback control proposed and simulated in Matlab-Simulink.


2011 ◽  
Vol 268-270 ◽  
pp. 509-512 ◽  
Author(s):  
Zhi Yong Qu ◽  
Zheng Mao Ye

Permanent magnet synchronous motor systems are usually used in industry. This kind of systems is nonlinear in nature and generally difficult to control. The ordinary linear constant gain controller will cause overshoot or even loss of system stability. Application of adaptive controller to a permanent magnet synchronous motor system is investigated in this paper. The dynamic model of the system is given and the stability is also analyzed using Popov's criterion. The steady state error can be eliminated using adaptive controller combined with an integration term. Simulation results show the performance of adaptive controller with fast response and less overshoot.


Author(s):  
Matthew S. Allen

A variety of systems can be faithfully modeled as linear with coefficients that vary periodically with time or Linear Time-Periodic (LTP). Examples include anisotropic rotorbearing systems, wind turbines, satellite systems, etc… A number of powerful techniques have been presented in the past few decades, so that one might expect to model or control an LTP system with relative ease compared to time varying systems in general. However, few, if any, methods exist for experimentally characterizing LTP systems. This work seeks to produce a set of tools that can be used to characterize LTP systems completely through experiment. While such an approach is commonplace for LTI systems, all current methods for time varying systems require either that the system parameters vary slowly with time or else simply identify a few parameters of a pre-defined model to response data. A previous work presented two methods by which system identification techniques for linear time invariant (LTI) systems could be used to identify a response model for an LTP system from free response data. One of these allows the system’s model order to be determined exactly as if the system were linear time-invariant. This work presents a means whereby the response model identified in the previous work can be used to generate the full state transition matrix and the underlying time varying state matrix from an identified LTP response model and illustrates the entire system-identification process using simulated response data for a Jeffcott rotor in anisotropic bearings.


Sign in / Sign up

Export Citation Format

Share Document