Wrinkling of Functionally Graded Sandwich Structures Subject to Biaxial and In-Plane Shear Loads

2017 ◽  
Vol 84 (12) ◽  
Author(s):  
Victor Birman ◽  
Harold Costa

Benefits of a functionally graded core increasing wrinkling stability of sandwich panels have been demonstrated in a recent paper (Birman, V., and Vo, N., 2017, “Wrinkling in Sandwich Structures With a Functionally Graded Core,” ASME J. Appl. Mech., 84(2), p. 021002), where a several-fold increase in the wrinkling stress was achieved, without a significant weight penalty, using a stiffer core adjacent to the facings. In this paper, wrinkling is analyzed in case where the facings are subject to biaxial compression and/or in-plane shear loading, and the core is arbitrary graded through the thickness. Two issues addressed are the effect of biaxial or in-plane shear loads on wrinkling stability of panels with both graded and ungraded core, and the verification that functional grading of the core remains an effective tool increasing wrinkling stability under such two-dimensional (2D) loads. As follows from the study, biaxial compression and in-plane shear cause a reduction in the wrinkling stress compared to the case of a uniaxial compression in all grading scenarios. Accordingly, even sandwich panels whose mode of failure under uniaxial compression was global buckling, the loss of strength in the facings or core crimpling may become vulnerable to wrinkling under 2D in-plane loading. It is demonstrated that a functionally graded core with the material distributed to increase the local stiffness in the interface region with the facings is effective in preventing wrinkling under arbitrary in-plane loads compared to the equal weight homogeneous core.

2016 ◽  
Vol 84 (2) ◽  
Author(s):  
Victor Birman ◽  
Nam Vo

This paper illustrates the effectiveness of a functionally graded core in preventing wrinkling in sandwich structures. The problem is solved for piecewise and continuous through-the-thickness core stiffness variations. The analysis is extended to account for the effect of temperature on wrinkling of a sandwich beam with a functionally graded core. The applicability of the developed theory is demonstrated for foam cores where the stiffness is an analytical function of the mass density. In this case, a desirable variation of the stiffness can be achieved by varying the mass density through the thickness of the core. Numerical examples demonstrate that wrinkling stability of a facing can significantly be increased using a piecewise graded core. The best results are achieved locating the layers with a higher mass density adjacent to the facing. A significant increase in the wrinkling stress can eliminate wrinkling as a possible mode of failure, without noticeably increasing the weight of the structure. In the case of a uniform temperature applied in addition to compression, wrinkling in a sandwich beam with a functionally graded core is affected both by its grading as well as by the effect of temperature on the facing and core properties. Although even a moderately elevated temperature may significantly lower the wrinkling stress, the advantage of a graded core over the homogeneous counterpart is conserved.


Author(s):  
Dongjie Ai ◽  
Yuansheng Cheng ◽  
Jun Liu ◽  
Jianhu Liu ◽  
Haikun Wang ◽  
...  

Sandwich panel structures, which consist of two thin faces and low relative density cores, can significantly mitigate the possibilities of panel fractures. In the present paper, numerical simulations are conducted to study the deformation and fracture modes of sandwich structures under near-field underwater blasts and contact underwater blasts. Two different core materials are employed, namely aluminum foam and PVC foam. Main focus of this paper was placed to (i) study the failure mechanisms and energy absorption characteristics of sandwich structures in typical conditions, (ii) to demonstrate the benefits of such structures compared with solid plates of equal weight, and (iii) to obtain the properties of withstanding underwater explosion for single core material sandwich panels. In addition, the effects of panel thickness configuration and core height on deformation and energy absorption of the plates were explored. Results indicated that sandwich structures showed an effective reduction in the maximum panel deflection compared with a monolithic plate of same mass. The design parameters have great impacts on the results.


Author(s):  
Tianyu Zhou ◽  
Pan Zhang ◽  
Yuansheng Cheng ◽  
Manxia Liu ◽  
Jun Liu

In this paper, the numerical model was developed by using the commercial code LS/DYNA to investigate the dynamic response of sandwich panels with three PVC foam core layers subjected to non-contact underwater explosion. The simulation results showed that the structural response of the sandwich panel could be divided into four sequential regimes: (1) interaction between the shock wave and structure, (2) compression phase of sandwich core, (3) collapse of cavitation bubbles and (4) overall bending and stretching of sandwich panel under its own inertia. Main attention of present study was placed at the blast resistance improvement by tailoring the core layer gradation under the condition of same weight expense and same blast load. Using the minimization of back face deflection as the criteria for evaluating the blast resistant of panel, the panels with core gradation of high/middle/low or middle/low/high (relative densities) from the front face to back face demonstrated the optimal resistance. Moreover, the comparative studies on the blast resistance of the functionally graded sandwich panels and equivalent ungraded ones were carried out. The optimum functionally graded sandwich panel outperformed the equivalent ungraded one for relatively small charge masses. The energy absorption characteristics as well as the core compression were also discussed. It is found that the core gradation has a negligible effect on the whole energy dissipation of panel, but would significantly affect the energy distribution among sandwich panel components and the compression value of core.


1999 ◽  
Vol 66 (2) ◽  
pp. 485-491 ◽  
Author(s):  
C. Rubio-Gonzalez ◽  
J. J. Mason

The elastodynamic response of an infinite orthotropic material with a finite crack under concentrated in-plane shear loads is examined. A solution for the stress intensity factor history around the crack tips is found. Laplace and Fourier transforms are employed to solve the equations of motion leading to a Fredholm integral equation on the Laplace transform domain. The dynamic stress intensity factor history can be computed by numerical Laplace transform inversion of the solution of the Fredholm equation. Numerical values of the dynamic stress intensity factor history for several example materials are obtained. The results differ from mode I in that there is heavy dependence upon the material constants. This solution can be used as a Green's function to solve dynamic problems involving finite cracks and in-plane shear loading.


Sign in / Sign up

Export Citation Format

Share Document