A Propeller Model for Steady-State and Transient Performance Prediction of Turboprop and Counter-Rotating Open Rotor Engines

Author(s):  
Vinícius Tavares Silva ◽  
Cleverson Bringhenti ◽  
Jesuino Takachi Tomita ◽  
Anderson Frasson Fontes

This paper describes a methodology used for propeller performance estimation, which was implemented in an in-house modular program for gas turbine performance prediction. A model based on subsonic generic propeller maps and corrected for compressibility effects, under high subsonic speeds, was proposed and implemented. Considering this methodology, it is possible to simulate conventional turboprop architectures and counter-rotating open rotor (CROR) engines in both steady-state and transient operating conditions. Two simulation scenarios are available: variable pitch angle propeller with constant speed; or variable speed propeller with constant pitch angle. The simulations results were compared with test bench data and two gas turbine performance commercial software packages were used to fulfill the model validation for conventional turboprop configurations. Furthermore, a direct drive CROR engine was simulated using a variable inlet guide vanes (VIGV) control strategy during transient operation. The model has shown to be able to provide several information about propeller-based engine performance using few input data, and a comprehensive understanding on steady-state and transient performance behavior was achieved in the obtained results.

2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Vinícius Tavares Silva ◽  
Cleverson Bringhenti ◽  
Jesuino Takachi Tomita ◽  
Olivier Petit

This work describes a methodology used for counter-rotating (CR) propellers performance estimation. The method is implemented in an in-house program for gas turbine performance prediction, making possible the simulation of the counter-rotating open rotor (CROR) architecture. The methodology is used together with a variable geometry compressor control strategy to avoid surge conditions. Two cases are simulated under transient operation for both fixed and variable geometry compressor. The influence of the variable geometry control on the transient performance of CROR engines is evaluated and a comprehensive understanding on the transient behavior of this type of engine could be obtained. It is shown that the use of the variable geometry compressor control does not significantly affect the overall engine performance, while avoiding the surge conditions, thus ensuring the engine operation safety.


Author(s):  
Y. G. Li

Most gas turbine performance analysis based diagnostic methods use the information from steady state measurements. Unfortunately, steady state measurement may not be obtained easily in some situations, and some types of gas turbine fault contribute little to performance deviation at steady state operating conditions but significantly during transient processes. Therefore, gas turbine diagnostics with transient measurement is superior to that with steady state measurement. In this paper, an accumulated deviation is defined for gas turbine performance parameters in order to measure the level of performance deviation during transient processes. The features of the accumulated deviation are analysed and compared with traditionally defined performance deviation at a steady state condition. A non-linear model based diagnostic method, combined with a genetic algorithm (GA), is developed and applied to a model gas turbine engine to diagnose engine faults by using the accumulated deviation obtained from transient measurement. Typical transient measurable parameters of gas turbine engines are used for fault diagnostics, and a typical slam acceleration process from idle to maximum power is chosen in the analysis. The developed diagnostic approach is applied to the model engine implanted with three typical single-component faults and is shown to be very successful.


Author(s):  
Jayoung Ki ◽  
Changduk Kong ◽  
Seonghee Kho ◽  
Changho Lee

Because an aircraft gas turbine operates under various flight conditions that change with altitude, flight velocity, and ambient temperature, the performance estimation that considers the flight conditions must be known before developing or operating the gas turbine. More so, for the unmanned aerial vehicle (UAV) where the engine is activated by an onboard engine controller in emergencies, the precise performance model including the estimated steady-state and transient performance data should be provided to the engine control system and the engine health monitoring system. In this study, a graphic user interface (GUI) type steady-state and transient performance simulation model of the PW206C turboshaft engine that was adopted for use in the Smart UAV was developed using SIMULINK for the performance analysis. For the simulation model, first the component maps including the compressor, gas generator turbine, and power turbine were inversely generated from the manufacturer’s limited performance deck data by the hybrid method. For the work and mass flow matching between components of the steady-state simulation, the state-flow library of SIMULINK was applied. The proposed steady-state performance model can simulate off-design point performance at various flight conditions and part loads, and in order to evaluate the steady-state performance model their simulation results were compared with the manufacturer’s performance deck data. According to comparison results, it was confirmed that the steady-state model agreed well with the deck data within 3% in all flight envelopes. In the transient performance simulation model, the continuity of mass flow (CMF) method was used, and the rotational speed change was calculated by integrating the excess torque due to the transient fuel flow change using the Runge–Kutta method. In this transient performance simulation, the turbine overshoot was predicted.


Author(s):  
Jayoung Ki ◽  
Changduk Kong ◽  
Seonghee Kho ◽  
Changho Lee

Because aircraft gas turbine operates under various flight conditions that changes with altitude, flight velocity and ambient temperature, performance estimation that considers the flight conditions must be known before developing or operating the gas turbine. More so, for the UAV (Unmanned Aerial Vehicle) where the engine is activated by an onboard engine controller in emergency, the precise performance model including the estimated steady-state and transient performance data should be provided to the engine control system and the engine health monitoring system. In this study, a GUI (Graphic User Interface) type steady-state and transient performance simulation model of the PW206C turbo shaft engine that was adopted for use on the Smart UAV was developed using SIMULINK for performance analysis. For the simulation model, firstly the component maps including compressor, gas generator turbine and power turbine were inversely generated from manufacturer’s limited performance deck data by Hybrid Method. For the work and mass flow matching between components of the steady-state simulation, the state-flow library of SIMULINK was applied. The proposed steady-state performance model can simulate off-design point performance at various flight conditions and part loads, and in order to evaluate the steady-state performance model their simulation results were compared with manufacturer’s performance deck data. According to comparison results, it was confirm that the steady-state model well agreed with the deck data within 3% in all flight envelop. In the transient performance simulation model, the CMF (Continuity of Mass Flow) method was used and the rotational speed change was calculated by integrating the excess torque due to the transient fuel flow change using Runge-Kutta method. In this transient performance simulation, the turbine overshoot was predicted.


Author(s):  
Elias Tsoutsanis ◽  
Nader Meskin ◽  
Mohieddine Benammar ◽  
Khashayar Khorasani

Gas turbines are faced with new challenges of increasing flexibility in their operation while reducing their life cycle costs, leading to new research priorities and challenges. One of these challenges involves the establishment of high fidelity, accurate, and computationally efficient engine performance simulation, diagnosis, and prognosis schemes, which will be able to handle and address the gas turbine's ever-growing flexible and dynamic operational characteristics. Predicting accurately the performance of gas turbines depends on detailed understanding of the engine components behavior that is captured by component performance maps. The limited availability of these maps due to their proprietary nature has been commonly managed by adapting default generic maps in order to match the targeted off-design or engine degraded measurements. Although these approaches might be suitable in small range of operating conditions, further investigation is required to assess the capabilities of such methods for use in gas turbine diagnosis under dynamic transient conditions. The diversification of energy portfolio and introduction of distributed generation in electrical energy production have created need for such studies. The reason is not only the fluctuation in energy demand but also more importantly the fact that renewable energy sources, which work with conventional fossil fuel based sources, supply the grid with varying power that depend, for example, on solar irradiation. In this paper, modeling methods for the compressor and turbine maps are presented for improving the accuracy and fidelity of the engine performance prediction and diagnosis. The proposed component map fitting methods simultaneously determine the best set of equations for matching the compressor and the turbine map data. The coefficients that determine the shape of the component map curves have been analyzed and tuned through a nonlinear multi-objective optimization scheme in order to meet the targeted set of engine measurements. The proposed component map modeling methods are developed in the object oriented matlab/simulink environment and integrated with a dynamic gas turbine engine model. The accuracy of the methods is evaluated for predicting multiple component degradations of an engine at transient operating conditions. The proposed adaptive diagnostics method has the capability to generalize current gas turbine performance prediction approaches and to improve performance-based diagnostic techniques.


Author(s):  
Elias Tsoutsanis ◽  
Nader Meskin ◽  
Mohieddine Benammar ◽  
Khashayar Khorasani

Improving efficiency, reliability and availability of gas turbines have become more than ever one of the main areas of interest in gas turbine research. This is mainly due to the stringent environmental regulations that have to be met in such a mature technology sector; and consequently new research challenges have been identified. One of these involves the establishment of high fidelity, accurate, and computationally efficient engine performance simulation, diagnosis and prognosis technology. Performance prediction of gas turbines is strongly dependent on detailed understanding of the engine component behaviour. Compressors are of special interest because they can generate all sorts of operability problems like surge, stall and flutter; and their operating line is determined by the turbine characteristic. Compressor performance maps, which are obtained in costly rig tests and remain manufacturers proprietary information, impose a stringent limitation that has been commonly resolved by scaling default generic maps in order to match the targeted off-design or engine degraded measurements. This approach is efficient in small range of operating conditions but becomes less accurate for a wider range of operations. In this paper, a novel compressor map generation method, with the primary objective of improving the accuracy and fidelity of the engine model performance prediction is developed and presented. A new compressor map fitting and modelling method is introduced to simultaneously determine the best elliptical curves to a set of compressor map data. The coefficients that determine the shape of compressor maps’ curves have been analyzed and tuned through a multi-objective optimization algorithm in order to meet the targeted set of measurements. The proposed component map generation method is developed in the object oriented Matlab/Simulink environment and is integrated in a dynamic gas turbine engine model. The accuracy of this method is evaluated for off-design steady state and transient engine conditions. The proposed compressor map generation method has the capability to refine current gas turbine performance prediction approaches and to improve model-based diagnostic techniques.


Author(s):  
George M. Koutsothanasis ◽  
Anestis I. Kalfas ◽  
Georgios Doulgeris

This paper presents the benefits of the more electric vessels powered by hybrid engines and investigates the suitability of a particular prime-mover for a specific ship type using a simulation environment which can approach the actual operating conditions. The performance of a mega yacht (70m), powered by two 4.5MW recuperated gas turbines is examined in different voyage scenarios. The analysis is accomplished for a variety of weather and hull fouling conditions using a marine gas turbine performance software which is constituted by six modules based on analytical methods. In the present study, the marine simulation model is used to predict the fuel consumption and emission levels for various conditions of sea state, ambient and sea temperatures and hull fouling profiles. In addition, using the aforementioned parameters, the variation of engine and propeller efficiency can be estimated. Finally, the software is coupled to a creep life prediction tool, able to calculate the consumption of creep life of the high pressure turbine blading for the predefined missions. The results of the performance analysis show that a mega yacht powered by gas turbines can have comparable fuel consumption with the same vessel powered by high speed Diesel engines in the range of 10MW. In such Integrated Full Electric Propulsion (IFEP) environment the gas turbine provides a comprehensive candidate as a prime mover, mainly due to its compactness being highly valued in such application and its eco-friendly operation. The simulation of different voyage cases shows that cleaning the hull of the vessel, the fuel consumption reduces up to 16%. The benefit of the clean hull becomes even greater when adverse weather condition is considered. Additionally, the specific mega yacht when powered by two 4.2MW Diesel engines has a cruising speed of 15 knots with an average fuel consumption of 10.5 [tonne/day]. The same ship powered by two 4.5MW gas turbines has a cruising speed of 22 knots which means that a journey can be completed 31.8% faster, which reduces impressively the total steaming time. However the gas turbine powered yacht consumes 9 [tonne/day] more fuel. Considering the above, Gas Turbine looks to be the only solution which fulfills the next generation sophisticated high powered ship engine requirements.


Author(s):  
J. D. MacLeod ◽  
W. Grabe

The Machinery and Engine Technology (MET) Program of the National Research Council of Canada (NRCC) has established a program for the evaluation of sensors to measure gas turbine engine performance accurately. The precise measurement of fuel flow is an essential part of steady-state gas turbine performance assessment. Prompted by an international engine testing and information exchange program, and a mandate to improve all aspects of gas turbine performance evaluation, the MET Laboratory has critically examined two types of fuel flowmeters, Coriolis and turbine. The two flowmeter types are different in that the Coriolis flowmeter measures mass flow directly, while the turbine flowmeter measures volumetric flow, which must be converted to mass flow for conventional performance analysis. The direct measurement of mass flow, using a Coriolis flowmeter, has many advantages in field testing of gas turbines, because it reduces the risk of errors resulting from the conversion process. Turbine flowmeters, on the other hand, have been regarded as an industry standard because they are compact, rugged, reliable, and relatively inexpensive. This paper describes the project objectives, the experimental installation, and the results of the comparison of the Coriolis and turbine type flowmeters in steady-state performance testing. Discussed are variations between the two types of flowmeters due to fuel characteristics, fuel handling equipment, acoustic and vibration interference and installation effects. Also included in this paper are estimations of measurement uncertainties for both types of flowmeters. Results indicate that the agreement between Coriolis and turbine type flowmeters is good over the entire steady-state operating range of a typical gas turbine engine. In some cases the repeatability of the Coriolis flowmeter is better than the manufacturers specification. Even a significant variation in fuel density (10%), and viscosity (300%), did not appear to compromise the ability of the Coriolis flowmeter to match the performance of the turbine flowmeter.


Author(s):  
Choon Seng Wong ◽  
Susan Krumdieck

Similitude, or similarity concept, is an essential concept in turbomachinery to allow the designer to scale a turbine design to different sizes or different working fluids without repeating the whole design and development process. Similarity concept allows the testing of a turbomachine in a simple air test bench instead of a full-scale organic Rankine cycle (ORC) test bench. The concept can be further applied to adapt an existing gas turbine as an ORC turbine using different working fluids. This paper aims to scale an industrial gas turbine to different working fluids, other than the fluid the turbine was originally designed for. The turbine performance map for air was generated using the 3D computational fluid dynamics (CFD) analysis tools. Three different approaches using the similarity concept were applied to scale the turbine performance map using air and generate the performance map for two refrigerants: R134a and R245fa. The scaled performance curves derived from the air performance data were compared to the performance map generated using CFD analysis tools for R134a and R245fa. The three approaches were compared in terms of the accuracy of the performance estimation, and the most feasible approach was selected. The result shows that complete similarity cannot be achieved for the same turbomachine with two different working fluids, even at the best efficiency point for particular expansion ratio. If the constant pressure ratio is imposed, the location of the optimal velocity ratio and optimal specific speed would be underestimated with calculation error over 20%. Constant Δh0s/a012 was found to provide the highest accuracy in the performance estimation, but the expansion ratio (or pressure ratio) is varying using different working fluids due to the variation of sound speed. The differences in the fluid properties and the expansion ratio lead to the deviation in turbine performance parameters, velocity diagram, turbine's exit swirl angle, and entropy generation. The use of Δh0s/a012 further limits the application of the gas turbine for refrigerants with heavier molecular weight to a pressure ratio less than the designed pressure ratio using air. The specific speed at the best efficiency point was shifted to a higher value if higher expansion ratio was imposed. A correction chart for R245fa was attempted to estimate the turbine's performance at higher expansion ratio as a function of volumetric flow ratio.


Sign in / Sign up

Export Citation Format

Share Document