Steady-State and Transient Performance Modeling of Smart UAV Propulsion System Using SIMULINK

Author(s):  
Jayoung Ki ◽  
Changduk Kong ◽  
Seonghee Kho ◽  
Changho Lee

Because aircraft gas turbine operates under various flight conditions that changes with altitude, flight velocity and ambient temperature, performance estimation that considers the flight conditions must be known before developing or operating the gas turbine. More so, for the UAV (Unmanned Aerial Vehicle) where the engine is activated by an onboard engine controller in emergency, the precise performance model including the estimated steady-state and transient performance data should be provided to the engine control system and the engine health monitoring system. In this study, a GUI (Graphic User Interface) type steady-state and transient performance simulation model of the PW206C turbo shaft engine that was adopted for use on the Smart UAV was developed using SIMULINK for performance analysis. For the simulation model, firstly the component maps including compressor, gas generator turbine and power turbine were inversely generated from manufacturer’s limited performance deck data by Hybrid Method. For the work and mass flow matching between components of the steady-state simulation, the state-flow library of SIMULINK was applied. The proposed steady-state performance model can simulate off-design point performance at various flight conditions and part loads, and in order to evaluate the steady-state performance model their simulation results were compared with manufacturer’s performance deck data. According to comparison results, it was confirm that the steady-state model well agreed with the deck data within 3% in all flight envelop. In the transient performance simulation model, the CMF (Continuity of Mass Flow) method was used and the rotational speed change was calculated by integrating the excess torque due to the transient fuel flow change using Runge-Kutta method. In this transient performance simulation, the turbine overshoot was predicted.

Author(s):  
Jayoung Ki ◽  
Changduk Kong ◽  
Seonghee Kho ◽  
Changho Lee

Because an aircraft gas turbine operates under various flight conditions that change with altitude, flight velocity, and ambient temperature, the performance estimation that considers the flight conditions must be known before developing or operating the gas turbine. More so, for the unmanned aerial vehicle (UAV) where the engine is activated by an onboard engine controller in emergencies, the precise performance model including the estimated steady-state and transient performance data should be provided to the engine control system and the engine health monitoring system. In this study, a graphic user interface (GUI) type steady-state and transient performance simulation model of the PW206C turboshaft engine that was adopted for use in the Smart UAV was developed using SIMULINK for the performance analysis. For the simulation model, first the component maps including the compressor, gas generator turbine, and power turbine were inversely generated from the manufacturer’s limited performance deck data by the hybrid method. For the work and mass flow matching between components of the steady-state simulation, the state-flow library of SIMULINK was applied. The proposed steady-state performance model can simulate off-design point performance at various flight conditions and part loads, and in order to evaluate the steady-state performance model their simulation results were compared with the manufacturer’s performance deck data. According to comparison results, it was confirmed that the steady-state model agreed well with the deck data within 3% in all flight envelopes. In the transient performance simulation model, the continuity of mass flow (CMF) method was used, and the rotational speed change was calculated by integrating the excess torque due to the transient fuel flow change using the Runge–Kutta method. In this transient performance simulation, the turbine overshoot was predicted.


Author(s):  
Vinícius Tavares Silva ◽  
Cleverson Bringhenti ◽  
Jesuino Takachi Tomita ◽  
Anderson Frasson Fontes

This paper describes a methodology used for propeller performance estimation, which was implemented in an in-house modular program for gas turbine performance prediction. A model based on subsonic generic propeller maps and corrected for compressibility effects, under high subsonic speeds, was proposed and implemented. Considering this methodology, it is possible to simulate conventional turboprop architectures and counter-rotating open rotor (CROR) engines in both steady-state and transient operating conditions. Two simulation scenarios are available: variable pitch angle propeller with constant speed; or variable speed propeller with constant pitch angle. The simulations results were compared with test bench data and two gas turbine performance commercial software packages were used to fulfill the model validation for conventional turboprop configurations. Furthermore, a direct drive CROR engine was simulated using a variable inlet guide vanes (VIGV) control strategy during transient operation. The model has shown to be able to provide several information about propeller-based engine performance using few input data, and a comprehensive understanding on steady-state and transient performance behavior was achieved in the obtained results.


Author(s):  
Vrishika Singh ◽  
Lars-Uno Axelsson ◽  
W.P.J. Visser

The demand for more environmentally friendly and economic power production has led to an increasing interest to utilize alternative fuels. In the past, several investigations focusing on the effect of low-calorific fuels on the combustion process and steady-state performance have been published. However, it is also important to consider the transient behavior of the gas turbine when operating on nonconventional fuels. The alternative fuels contain very often a large amount of dilutants resulting in a low energy density. Therefore, a higher fuel flow rate is required, which can impact the dynamic behavior of the gas turbine. This paper will present an investigation of the transient behavior of the all-radial OP16 gas turbine. The OP16 is an industrial gas turbine rated at 1.9 MW, which has the capability to burn a wide range of fuels including ultra-low-calorific gaseous fuels. The transient behavior is simulated using the commercial software GSP including the recently added thermal network modeling functionality. The steady-state and transient performance model is thoroughly validated using real engine test data. The developed model is used to simulate and analyze the physical behavior of the gas turbine when performing load sheds. From the simulations, it is found that the energy density of the fuel has a noticeable effect on the rotor over-speed and must be considered when designing the fuel control.


Author(s):  
Changduk Kong ◽  
Jayoung Ki ◽  
Kwangwoong Koh

Steady-state and transient performance analysis programs for 200kw-class small turboshaft engine with free power turbine were developed. An existing turbojet engine was used for the gas generator of the developed turboshaft engine, and it was modified to satisfy performance requirements of this turboshaft engine. To verify the availability of steady-state performance program for this engine: the program was applied to the same type gas turbine test unit, and the analysis results were compared to experimental results. The developed transient performance analysis program using the CMF (Constant Mass flow) method was utilized to analysis in the cases of fuel step increase and the ramp increase.


Author(s):  
Vrishika Singh ◽  
Lars-Uno Axelsson ◽  
W. P. J. Visser

The demand for more environmentally friendly and economic power production has led to an increasing interest to utilize alternative fuels. In the past, several investigations focusing on the effect of low-calorific fuels on the combustion process and steady-state performance have been published. However, it is also important to consider the transient behavior of the gas turbine when operating on non-conventional fuels. The alternative fuels contain very often a large amount of dilutants resulting in a low energy density. Therefore a higher fuel flow rate is required, which can impact the dynamic behavior of the gas turbine. This paper will present an investigation of the transient behavior of the all-radial OP16 gas turbine. The OP16 is an industrial gas turbine rated at 1.9 MW, which has the capability to burn a wide range of fuels including ultra-low-calorific gaseous fuels. The transient behavior is simulated using the commercial software GSP including the recently added thermal network modeling functionality. The steady-state and transient performance model is thoroughly validated using real engine test data. The developed model is used to simulate and analyze the physical behavior of the gas turbine when performing load sheds. From the simulations it is found that the energy density of the fuel has a noticeable effect of the rotor over-speed and must be considered when designing the fuel control.


Author(s):  
Maurice F. White

This paper discusses a program which has been developed for the prediction of steady state and transient performance of a gas turbine driven generator. The gas turbine plant was modelled using the component model principle and is based on the method for continuity of mass flow. The model requires the use of compressor and turbine characteristics together with curves for combustion efficiency. A number of simplifications are made in connecion with transient calculations. The influence of the machines physical volume on continuity of mass flow and effects of heat transfer between the gas and structural components are neglected. The model was used to investigate how component deterioration affects the important condition parameters during load transients and during rapid acceleration or deceleration. Fault conditions were simulated by manipulating the various efficiencies and loss factors for the different components in the machine. Many of the condition parameters that were investigated showed changes during acceleration which were considerably different from comparable changes in a fault free gas turbine.


2014 ◽  
Vol 257 ◽  
pp. 412-420 ◽  
Author(s):  
Dustin McLarty ◽  
Jack Brouwer ◽  
Scott Samuelsen

Author(s):  
J. D. MacLeod ◽  
W. Grabe

The Machinery and Engine Technology (MET) Program of the National Research Council of Canada (NRCC) has established a program for the evaluation of sensors to measure gas turbine engine performance accurately. The precise measurement of fuel flow is an essential part of steady-state gas turbine performance assessment. Prompted by an international engine testing and information exchange program, and a mandate to improve all aspects of gas turbine performance evaluation, the MET Laboratory has critically examined two types of fuel flowmeters, Coriolis and turbine. The two flowmeter types are different in that the Coriolis flowmeter measures mass flow directly, while the turbine flowmeter measures volumetric flow, which must be converted to mass flow for conventional performance analysis. The direct measurement of mass flow, using a Coriolis flowmeter, has many advantages in field testing of gas turbines, because it reduces the risk of errors resulting from the conversion process. Turbine flowmeters, on the other hand, have been regarded as an industry standard because they are compact, rugged, reliable, and relatively inexpensive. This paper describes the project objectives, the experimental installation, and the results of the comparison of the Coriolis and turbine type flowmeters in steady-state performance testing. Discussed are variations between the two types of flowmeters due to fuel characteristics, fuel handling equipment, acoustic and vibration interference and installation effects. Also included in this paper are estimations of measurement uncertainties for both types of flowmeters. Results indicate that the agreement between Coriolis and turbine type flowmeters is good over the entire steady-state operating range of a typical gas turbine engine. In some cases the repeatability of the Coriolis flowmeter is better than the manufacturers specification. Even a significant variation in fuel density (10%), and viscosity (300%), did not appear to compromise the ability of the Coriolis flowmeter to match the performance of the turbine flowmeter.


Sign in / Sign up

Export Citation Format

Share Document