Optimization of the Heat Transfer Rate of Energy Systems of Conductive Bodies Confined to the Center of a Cavity

2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Fatma Habbachi ◽  
Fakhreddine S. Oueslati ◽  
Rachid Bennacer ◽  
Afif Elcafsi

This paper is a numerical study conducted to investigate the conjugate flow and heat transfer occurring in three-dimensional (3D) natural convection. A cubical enclosure partially filled with porous block (central cubic) and considered in local thermal equilibrium with the fluid. The physical case considered concerns the existence of a horizontal temperature difference across the enclosure, between the left and the right wall, with the other external surfaces being adiabatic. Under these conditions, flow inside the enclosure is generated by the density (temperature) difference across the enclosure and the interaction between the solid porous blocks and the fluid. The Nusselt number on the hot and cold walls is presented to illustrate the overall characteristics of heat transfer consequence of the constrained flow inside the enclosure. The study focuses on the fluid flow and heat transfer evolution versus the dimensionless thickness of the inserted porous layer (0% ≤ η ≤ 100%) and the relative thermal conductivity of the solid matrix to that of the fluid (10−3≤λ̃≤103). The obtained complex flow structure and the corresponding heat transfer (velocity, temperature profiles) are discussed in a steady-state situation. The numerical results are illustrated in terms of isotherms, velocity, streamlines fields, and averaged Nusselt number. Thus, the results of this work can help developing new tools and to optimize the overall heat transfer rate, which is important in many electronic energy components and other energy recovering systems.

2012 ◽  
Vol 557-559 ◽  
pp. 2141-2146
Author(s):  
Yong Hua You ◽  
Ai Wu Fan ◽  
Chen Chen ◽  
Shun Li Fang ◽  
Shi Ping Jin ◽  
...  

Trefoil-hole baffles have good thermo-hydraulic performances as the support of heat pipes, however the published research paper is relatively limited. The present paper investigates the shellside thermo-hydraulic characteristics of shell-and-tube heat exchanger with trefoil-hole baffles (THB-STHX) under turbulent flow region, and the variations of shellside Nusselt number, pressure loss and overall thermo-hydraulic performance (PEC) with Reynolds number are obtained for baffles of varied pitch with the numerical method. CFD results demonstrate that the trefoil-hole baffle could enhance the heat transfer rate of shell side effectively, and the maximal average Nusselt number is augmented by ~2.3 times that of no baffle, while average pressure loss increases by ~9.6 times. The PEC value of shell side lies in the range of 16.3 and 73.8 kPa-1, and drops with the increment of Reynolds number and the decrement of baffle pitch, which indicates that the heat exchanger with trefoil-hole baffles of larger pitch could generate better overall performance at low Reynolds number. Moreover, the contours of velocity, turbulent intensity and temperature are presented for discussions. It is found that shellside high-speed jet, intensive recirculation flow and high turbulence level could enhance the heat transfer rate effectively. Besides good performance, THB-STHXs are easily manufactured, thus promise widely applied in various industries.


Author(s):  
Ridha Jmai ◽  
Brahim Ben Beya ◽  
Taieb Lili

Natural convection in a rectangular cavity with aspect ratio (Ax), partially heated and filled with a nanofluid (Cu-Water) has been studied numerically. Two heat sources with length (B) are placed on the opposite vertical walls; the remainder of the walls is maintained adiabatic while the horizontal walls are brought to a cold temperature. The equations governing the flow are solved using a finite volume home code using a multigrid technique. Among the parameters governing the flow, a detailed study on the effects of the aspect ratio (Ax) and the length of the source (B) on flow and heat transfer rate is given. The results are shown in terms of streamlines and isotherms. It was found that the transfer of heat significantly increases with the aspect ratio (Ax) and the length of the source (B). A correlation expressing the Nusselt number as a function of (Ax) and d is established.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. Goodarzi ◽  
M. R. Safaei ◽  
Hakan F. Oztop ◽  
A. Karimipour ◽  
E. Sadeghinezhad ◽  
...  

The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNGk-εmodel and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (104) and turbulent flow (108). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible.


Author(s):  
Patrick H. Oosthuizen ◽  
J. T. Paul

Top Down – Bottom Up blinds have become quite popular in recent times. However the effects of such blind systems on the convective heat transfer from the window to the surrounding room have not been extensively studied and the effect of solar irradiation of the blind on the window heat transfer has not received significant attention. The purpose of the present work was therefore to numerically investigate the effect of solar irradiation of Top Down – Bottom Up slatted blinds on this convective heat transfer. An approximate model of the window-blind system has been adopted. The solar radiation falling on the blinds is assumed to produce a uniform rate of heat generation in the blind. The Boussinesq approximation has been used. Radiant heat transfer effects have been neglected. Conditions under which laminar, transitional and turbulent flows occur have been considered. The main emphasis is on the effect of the magnitude of the irradiation and of the size of the blind openings at the top and bottom of the window on the convective heat transfer rate from the window to the room.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
M. Mohammadpour-Ghadikolaie ◽  
M. Saffar-Avval ◽  
Z. Mansoori ◽  
N. Alvandifar ◽  
N. Rahmati

Laminar forced convection heat transfer from a constant temperature tube wrapped fully or partially by a metal porous layer and subjected to a uniform air cross-flow is studied numerically. The main aim of this study is to consider the thermal performance of some innovative arrangements in which only certain parts of the tube are covered by metal foam. The combination of Navier–Stokes and Darcy–Brinkman–Forchheimer equations is applied to evaluate the flow field. Governing equations are solved using the finite volume SIMPLEC algorithm and the effects of key parameters such as Reynolds number, metal foam thermophysical properties, and porous layer thickness on the Nusselt number are investigated. The results show that using a tube which is fully wrapped by an external porous layer with high thermal conductivity, high Darcy number, and low drag coefficient, can provide a high heat transfer rate in the high Reynolds number laminar flow, increasing the Nusselt number almost as high as 16 times compared to a bare tube. The most important result of thisstudy is that by using some novel arrangements in which the tube is partially covered by the foam layer, the heat transfer rate can be increased at least 20% in comparison to the fully wrapped tube, while the weight and material usage can be considerably reduced.


2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110391
Author(s):  
Ben Abdelmlek Khaoula ◽  
Ben Nejma Fayçal

This paper deals with a numerical study of mixed convection heat transfer in horizontal eccentric annulus. The inner cylinder is supposed hot and rotating, however the outer one is kept cold and motionless. The numerical problem was solved using COMSOL Multiphysics® which is based on finite element method. The resolution of the partial differential equations was conducted through an implicit scheme with the use of the damped Newton’s method. The present numerical analysis concerns the effect of eccentricity, rotation speed and Rayleigh number on the flow patterns, heat transfer rate, and energy efficiency of the process. It was found that the heat transfer rate increases with the increase of Rayleigh number. In addition, the heat transfer rate drops with the increase of rotation speed. Finally, we have demonstrated that maximum energy efficiency is achieved not only with higher Rayleigh number but also it is maximum with small eccentricity.


2021 ◽  
Author(s):  
Tony Avedissian

The free convective heat transfer in a double-glazed window with a between-pane Venetian blind has been studied numerically. The model geometry consists of a two-dimensional vertical cavity with a set of internal slats, centred between the glazings. Approximately 700 computational fluid dynamic solutions were conducted, including a grid sensitivity study. A wide set of geometrical and thermo-physical conditions was considered. Blind width to cavity width ratios of 0.5, 0.65, 0.8, and 0.9 were studied, along with three slat angles, 0º (fully open, +/- 45º (partially open), and 75º (closed). The blind to fluid thermal conductivity ratio was set to 15 and 4600. Cavity aspects of 20, 40, and 60, were examined over a Rayleigh number range of 10 to 10⁵, with the Prandtl number equal to 0.71. The resulting convective heat transfer data are presented in terms of average Nusselt numbers. Depending on the specific window/blind geometry, the solutions indicate that the blind can either reduce or enhance the convective heat transfer rate across the glazings. The present study does not consider radiation effects in the numerical solution. Therefore, a post-processing algorithm is presented that incorporates the convective and radiative influences, in order to determine the overall heat transfer rate across the window/blind system.


Author(s):  
T. Povey ◽  
K. S. Chana ◽  
T. V. Jones ◽  
J. Hurrion

Pronounced non-uniformities in combustor exit flow temperature (hot-streaks), which arise because of discrete injection of fuel and dilution air jets within the combustor and because of end-wall cooling flows, affect both component life and aerodynamics. Because it is very difficult to quantitatively predict the affects of these temperature non-uniformities on the heat transfer rates, designers are forced to budget for hot-streaks in the cooling system design process. Consequently, components are designed for higher working temperatures than the mass-mean gas temperature, and this imposes a significant overall performance penalty. An inadequate cooling budget can lead to reduced component life. An improved understanding of hot-streak migration physics, or robust correlations based on reliable experimental data, would help designers minimise the overhead on cooling flow that is currently a necessity. A number of recent research projects sponsored by a range of industrial gas turbine and aero-engine manufacturers attest to the growing interest in hot-streak physics. This paper presents measurements of surface and end-wall heat transfer rate for an HP nozzle guide vane (NGV) operating as part of a full HP turbine stage in an annular transonic rotating turbine facility. Measurements were conducted with both uniform stage inlet temperature and with two non-uniform temperature profiles. The temperature profiles were non-dimensionally similar to profiles measured in an engine. A difference of one half of an NGV pitch in the circumferential (clocking) position of the hot-streak with respect to the NGV was used to investigate the affect of clocking on the vane surface and end-wall heat transfer rate. The vane surface pressure distributions, and the results of a flow-visualisation study, which are also given, are used to aid interpretation of the results. The results are compared to two-dimensional predictions conducted using two different boundary layer methods. Experiments were conducted in the Isentropic Light Piston Facility (ILPF) at QinetiQ Farnborough, a short duration engine-size turbine facility. Mach number, Reynolds number and gas-to-wall temperature ratios were correctly modelled. It is believed that the heat transfer measurements presented in this paper are the first of their kind.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Karthikeyan Paramanandam ◽  
Venkatachalapathy S. ◽  
Balamurugan Srinivasan

Purpose The purpose of this paper is to study the flow and heat transfer characteristics of microchannel heatsinks with ribs, cavities and secondary channels. The influence of length and width of the ribs on heat transfer enhancement, secondary flows, flow distribution and temperature distribution are examined at different Reynolds numbers. The effectiveness of each heatsink is evaluated using the performance factor. Design/methodology/approach A three-dimensional solid-fluid conjugate heat transfer numerical model is used to study the flow and heat transfer characteristics in microchannels. One symmetrical channel is adopted for the simulation to reduce the computational cost and time. Flow inside the channels is assumed to be single-phase and laminar. The governing equations are solved using finite volume method. Findings The numerical results are analyzed in terms of average Nusselt number ratio, average base temperature, friction factor ratio, pressure variation inside the channel, temperature distribution, velocity distribution inside the channel, mass flow rate distribution inside the secondary channels and performance factor of each microchannels. Results indicate that impact of rib width is higher in enhancing the heat transfer when compared with its length but with a penalty on the pressure drop. The combined effects of secondary channels, ribs and cavities helps to lower the temperature of the microchannel heat sink and enhances the heat transfer rate. Practical implications The fabrication of microchannels are complex, but recent advancements in the additive manufacturing techniques makes the fabrication of the design considered in this numerical study feasible. Originality/value The proposed microchannel heatsink can be used in practical applications to reduce the thermal resistance, and it augments the heat transfer rate when compared with the baseline design.


Sign in / Sign up

Export Citation Format

Share Document