scholarly journals Numerical Study of Entropy Generation due to Coupled Laminar and Turbulent Mixed Convection and Thermal Radiation in an Enclosure Filled with a Semitransparent Medium

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. Goodarzi ◽  
M. R. Safaei ◽  
Hakan F. Oztop ◽  
A. Karimipour ◽  
E. Sadeghinezhad ◽  
...  

The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNGk-εmodel and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (104) and turbulent flow (108). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao-Hong Zhang ◽  
Tareq Saeed ◽  
Ebrahem A. Algehyne ◽  
M. A. El-Shorbagy ◽  
Adel M. El-Refaey ◽  
...  

AbstractIn this paper, the natural convection heat transfer of water/alumina nanofluid is investigated in a closed square cavity. An oblique magnetic field is applied on the cavity of angle $$\gamma$$ γ . There is also radiation heat transfer in the cavity. The cavity includes a high-temperature source of L-shape. A low-temperature source as a quadrant of a circle is placed at the corner of the cavity. All other walls are well insulated. The novelty of this work is a low-temperature obstacle embedded in the cavity. Simulations are conducted with a Fortran code based on the control volume method and simple algorithm. Entropy generation rate, Bejan number, and heat transfer are studied by changing different parameters. Results indicate that the highest rates of heat transfer and entropy generation have occurred for the perpendicular magnetic field at high values of the Rayleigh number. At these Rayleigh numbers, the minimum value of the Bejan number is obtained for 15° magnetic field. The magnetic field variation can lead to a change up to 53% in Nusselt number and up to 34% in generated entropy. In a weak magnetic field, the involvement of the radiation heat transfer mechanism leads to an increase in the heat transfer rate so that the Nusselt number can be increased by ten units considering the radiation heat transfer when there is no magnetic field. The maximum heat transfer rate occurs in the horizontal cavity and the minimum value in the cavity of 60° angle. For water, these values are 10.75 and 9.98 for 0 and 60 angles, respectively. Moreover, a weak magnetic field increases the heat transfer rate in the absence of the radiation mechanism, while it is reduced by considering a strong magnetic field.


2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110391
Author(s):  
Ben Abdelmlek Khaoula ◽  
Ben Nejma Fayçal

This paper deals with a numerical study of mixed convection heat transfer in horizontal eccentric annulus. The inner cylinder is supposed hot and rotating, however the outer one is kept cold and motionless. The numerical problem was solved using COMSOL Multiphysics® which is based on finite element method. The resolution of the partial differential equations was conducted through an implicit scheme with the use of the damped Newton’s method. The present numerical analysis concerns the effect of eccentricity, rotation speed and Rayleigh number on the flow patterns, heat transfer rate, and energy efficiency of the process. It was found that the heat transfer rate increases with the increase of Rayleigh number. In addition, the heat transfer rate drops with the increase of rotation speed. Finally, we have demonstrated that maximum energy efficiency is achieved not only with higher Rayleigh number but also it is maximum with small eccentricity.


2019 ◽  
Vol 30 (5) ◽  
pp. 2781-2807
Author(s):  
Davood Toghraie ◽  
Ehsan Shirani

Purpose The purpose of this paper is to investigate the mixed convection of a two-phase water–aluminum oxide nanofluid in a cavity under a uniform magnetic field. Design/methodology/approach The upper wall of the cavity is cold and the lower wall is warm. The effects of different values of Richardson number, Hartmann number, cavitation length and solid nanoparticles concentration on the flow and temperature field and heat transfer rate were evaluated. In this paper, the heat flux was assumed to be constant of 10 (W/m2) and the Reynolds number was assumed to be constant of 300 and the Hartmann number and the volume fraction of solid nanoparticles varied from 0 to 60 and 0 to 0.06, respectively. The Richardson number was considered to be 0.1, 1 and 5. Aspect ratios were 1, 1.5 and 2. Findings Comparison of the results of this paper with the results of the numerical and experimental studies of other researchers showed a good correlation. The results were presented in the form of velocity and temperature profiles, stream and isotherm lines and Nusselt numbers. The results showed that by increasing the Hartmann number, the heat transfer rate decreases. An increase from 0 to 20 in Hartmann number results in a 20 per cent decrease in Nusselt numbers, and by increasing the Hartmann number from 20 to 40, a 16 per cent decrease is observed in Nusselt number. Accordingly, it is inferred that by increasing the Hartmann number, the reduction in the Nusselt number is decreased. As the Richardson number increased, the heat transfer rate and, consequently, the Nusselt number increased. Therefore, an increase in the Richardson number results in an increase of the Nusselt number, that is, an increase in Richardson number from 0.1 to 1 and from 1 to 5 results in 37 and 47 per cent increase in Nusselt number, respectively. Originality/value Even though there have been numerous investigations conducted on convection in cavities under various configurations and boundary conditions, relatively few studies are conducted for the case of nanofluid mixed convection in square lid-driven cavity under the effect of magnetic field using two-phase model.


2012 ◽  
Vol 557-559 ◽  
pp. 2141-2146
Author(s):  
Yong Hua You ◽  
Ai Wu Fan ◽  
Chen Chen ◽  
Shun Li Fang ◽  
Shi Ping Jin ◽  
...  

Trefoil-hole baffles have good thermo-hydraulic performances as the support of heat pipes, however the published research paper is relatively limited. The present paper investigates the shellside thermo-hydraulic characteristics of shell-and-tube heat exchanger with trefoil-hole baffles (THB-STHX) under turbulent flow region, and the variations of shellside Nusselt number, pressure loss and overall thermo-hydraulic performance (PEC) with Reynolds number are obtained for baffles of varied pitch with the numerical method. CFD results demonstrate that the trefoil-hole baffle could enhance the heat transfer rate of shell side effectively, and the maximal average Nusselt number is augmented by ~2.3 times that of no baffle, while average pressure loss increases by ~9.6 times. The PEC value of shell side lies in the range of 16.3 and 73.8 kPa-1, and drops with the increment of Reynolds number and the decrement of baffle pitch, which indicates that the heat exchanger with trefoil-hole baffles of larger pitch could generate better overall performance at low Reynolds number. Moreover, the contours of velocity, turbulent intensity and temperature are presented for discussions. It is found that shellside high-speed jet, intensive recirculation flow and high turbulence level could enhance the heat transfer rate effectively. Besides good performance, THB-STHXs are easily manufactured, thus promise widely applied in various industries.


2006 ◽  
Vol 128 (8) ◽  
pp. 769-783 ◽  
Author(s):  
Ramin K. Rahmani ◽  
Theo G. Keith ◽  
Anahita Ayasoufi

In chemical processing industries, heating, cooling, and other thermal processing of viscous fluids are an integral part of the unit operations. Static mixers are often used in continuous mixing, heat transfer, and chemical reactions applications. In spite of widespread usage, the flow physics of static mixers is not fully understood. For a given application, besides experimentation, the modern approach to resolve this is to use powerful computational fluid dynamics tools to study static mixer performance. This paper extends a previous study by the authors on an industrial helical static mixer and investigates heat transfer and mixing mechanisms within a helical static mixer. A three-dimensional finite volume simulation is used to study the performance of the mixer under both laminar and turbulent flow conditions. The turbulent flow cases were solved using k−ω model. The effects of different flow conditions on the performance of the mixer are studied. Also, the effects of different thermal boundary conditions on the heat transfer rate in static mixer are studied. Heat transfer rates for a flow in a pipe containing no mixer are compared to that with a helical static mixer.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
L. Maudou ◽  
G. H. Choueiri ◽  
S. Tavoularis

The effect of eccentricity on heat transfer in upward flow in a vertical, open-ended, annular channel with a diameter ratio of 0.61, an aspect ratio of 18:1, and both internal surfaces heated uniformly has been investigated experimentally. Results have been reported for eccentricities ranging from the concentric case to the near-contact case and three inlet bulk Reynolds numbers, equal approximately to 1500, 2800, and 5700. This work complements our recently reported experimental results on natural convection in the same facility. The present results are deemed to be largely in the mixed convection regime with some overlap with the forced convection regime and likely to include cases with laminar, transitional, and turbulent flows in at least a part of the test section. Small eccentricity had an essentially negligible effect on the overall heat transfer rate, but high eccentricity reduced the average heat transfer rate by up to 60%. High eccentricity also resulted in wall temperatures in the narrow gap region that were much higher than those in the open channel. The concentric-case Nusselt number was higher than the Dittus–Boelter prediction, whereas the highly eccentric-case Nusselt number was significantly lower than that.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Fatma Habbachi ◽  
Fakhreddine S. Oueslati ◽  
Rachid Bennacer ◽  
Afif Elcafsi

This paper is a numerical study conducted to investigate the conjugate flow and heat transfer occurring in three-dimensional (3D) natural convection. A cubical enclosure partially filled with porous block (central cubic) and considered in local thermal equilibrium with the fluid. The physical case considered concerns the existence of a horizontal temperature difference across the enclosure, between the left and the right wall, with the other external surfaces being adiabatic. Under these conditions, flow inside the enclosure is generated by the density (temperature) difference across the enclosure and the interaction between the solid porous blocks and the fluid. The Nusselt number on the hot and cold walls is presented to illustrate the overall characteristics of heat transfer consequence of the constrained flow inside the enclosure. The study focuses on the fluid flow and heat transfer evolution versus the dimensionless thickness of the inserted porous layer (0% ≤ η ≤ 100%) and the relative thermal conductivity of the solid matrix to that of the fluid (10−3≤λ̃≤103). The obtained complex flow structure and the corresponding heat transfer (velocity, temperature profiles) are discussed in a steady-state situation. The numerical results are illustrated in terms of isotherms, velocity, streamlines fields, and averaged Nusselt number. Thus, the results of this work can help developing new tools and to optimize the overall heat transfer rate, which is important in many electronic energy components and other energy recovering systems.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Zoubair Boulahia ◽  
Abderrahim Wakif ◽  
Rachid Sehaqui

A numerical study is carried out concerning mixed convection of the nanofluid in two-sided lid-driven square cavity with a pair of triangular heat sources. The upper and bottom moving walls are thermally insulated while the left and right walls are cooled at constant temperature. Two-dimensional Navier-Stokes and energy equations are solved using the finite volume discretization method with SIMPLE algorithm. The method used is validated against previous works. Two cases were considered depending on the direction of moving walls. Effects of various design parameters such as Richardson number(0.1≤Ri≤100), nanoparticle volume fraction(0≤φ≤0.05), and size(25 nm≤dp≤145 nm)and type(Cu,Al2O3,TiO2)of nanoparticles on the heat transfer rate are investigated. The results of this investigation illustrate that, by reducing the diameter of the nanoparticles andRi, the heat transfer rate increases. Moreover, it is found that by changing horizontal direction of the moving walls the heat transfer rate variation is negligible.


Sign in / Sign up

Export Citation Format

Share Document