Different Configurations of Exhaust Gas Heat Recovery in Internal Combustion Engine: Evaluation on Different Driving Cycles Using Numerical Simulations

Author(s):  
Hanna Sara ◽  
David Chalet ◽  
Mickaël Cormerais

Exhaust gas heat recovery is one of the interesting thermal management strategies that aim to improve the cold start of the engine and thus reduce its fuel consumption. In this work, an overview of the heat exchanger used as well as the experimental setup and the different tests will be presented first. Then numerical simulations were run to assess and valorize the exhaust gas heat recovery strategy. The application was divided into three parts: an indirect heating of the oil with the coolant as a medium fluid, a direct heating of the oil, and direct heating of the oil and the coolant. Different ideas were tested over five different driving cycles: New European driving cycle (NEDC), worldwide harmonized light duty driving test cycle (WLTC), common Artemis driving cycle (CADC) (urban and highway), and one in-house developed cycle. The simulations were performed over two ambient temperatures. Different configurations were proposed to control the engine's lubricant maximum temperature. Results concerning the temperature profiles as well as the assessment of fuel consumption were stated for each case.

Author(s):  
Hanna Sara ◽  
David Chalet ◽  
Mickaël Cormerais ◽  
Jean-François Hetet

Since the main interest worldwide of green environment companies is to reduce pollutant emissions, the automotive industry is aiming to improve engine efficiency in order to reduce fuel consumption. Recently, studies have been shifted from upgrading the engine to the auxiliary systems attached to it. Thermal management is one of the successful fields that has shown promise in minimizing fuel consumption and reducing pollutant emissions. Throughout this work, a four-cylinder turbocharged diesel engine model was developed on GT-Power. Also, a thermal code has been developed in parallel on GT-Suite, in which the different parts of the coolant and lubricant circuits were modeled and calibrated to have the best agreement with the temperature profile of the two fluids in the system. Once the model was verified, hot coolant storage, a thermal management strategy, was applied to the system to assess the fuel consumption gain. The storage tank was located downstream the thermostat and upstream the radiator with three valves to control the coolant flow. The place was chosen to avoid negative impact on the cold start-up of the engine when the tank is at the ambient temperature. This strategy was applied on different driving cycles such as the NEDC, WLTC, CADC (urban and highway), and an in-house developed driving cycle. The ambient temperature was varied between −7°C to represent the coldest winter and 20°C. The results of this study summarize the ability of the hot coolant storage strategy in reducing the fuel consumption, and show the best driving cycle that needs to be applied on along with the influence of the different ambient temperatures.


2014 ◽  
Vol 663 ◽  
pp. 510-516 ◽  
Author(s):  
Agus Mujianto ◽  
Muhammad Nizam ◽  
Inayati

Urban area is the center of activities. Many people use the vehicle to cover the distance toward their activities places. In order to support the activities a large number of vehicles are moving in urban areas. Consequently, the consumption of fuel will increase from time to time and oil price has increased due to higher of demands. Thus, a plugin hybrid electric vehicle (PHEV) is proven as one of the best practical applications for transportation in order to reduce fuel consumption. One of the types of PHEV is a series PHEV (SPHEV). SPHEV is the simplest type of PHEV but still having higher efficiency of fuel than an internal combustion engine vehicle. This study was focused to discuss on the ability of SPHEV for covering distance and velocity of the urban drive cycle. Three driving cycles namely new European drive cycle (NEDC), extra urban driving cycle (EUDC), and EPA highway fuel economy cycle (HWFET) were used for the simulation using ADVISOR software to study performance of SPHEV. To achieve the best performance of SPHEV, the control strategy based on an artificial intelligence was purposed. The simulation was done by using SPHEV which consisted of15 kW battery, 41 kW engine, and 41 kW DC motor. The performance of SPHEV (fuel consumption and emission) was then compared to a gasoline engine vehicle (GEV). The results showed that SPHEV consumed less fuel and generated less emission during performing all drive cycles.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2838 ◽  
Author(s):  
Branimir Škugor ◽  
Joško Petrić

The article deals with optimization of control variables and design of management strategy for a hybrid hydraulic vehicle in parallel configuration. Conventionally driven delivery truck with experimentally verified data from the previous research is taken as a starting base and benchmark for comparison of the benefits of hybridization. Optimization of control variables is carried out using dynamic programming (DP) algorithm to gain insight into optimum operation of the driveline and minimum possible fuel consumption for five different driving cycles. Two rule based management strategies are given and compared, one of which is improved and innovative, based on the knowledge gained from DP results. Hybrid driveline can reduce fuel consumption from 5% to 30% depending on the driving cycle. More dynamic cycles with lot of "stop-and-go" events score greater reduction. Innovative management strategy has achieved a similar distribution of internal combustion engine (ICE) operating points as DP optimization but this did not result in a consistent reduction of fuel consumption compared to basic management strategy for all cycles. That is explained by the state of charge (SoC) behaviour and reducing the potential for recovery of regenerative braking energy.


Author(s):  
Andrzej Kuranc ◽  
Jacek Caban ◽  
Branislav Šarkan ◽  
Agnieszka Dudziak ◽  
Monika Stoma

Road transport have significant impact on regional economic and social development, but one can also point out a number of its disadvantages, which include environmental pollution. The paper presents measurements of fumes exhaust emissions of a passenger car with a significant operational mileage. The tests were carried out in a laboratory on a chassis roller dynamometer using various driving cycles. To determine the exhaust emissions, data on the mass of air flowing through the intake manifold was used, among others. The work also describes an example of own driving cycle developed based on urban driving in Lublin, Poland.


2018 ◽  
Vol 7 (4.19) ◽  
pp. 939
Author(s):  
Haider S. Najem ◽  
Qahtan A. Jawad ◽  
Abdulbaki K. Ali ◽  
Basil S. Munahi

In this paper, a statistical method is employed to develop a driving cycle for Basrah city and to find out the factor score and the Euclidean distance analysis by the Statistical Package for the Social Sciences (SPSS). A simple electronic system is built to construct the driving cycle, the system considered a microcontroller and a GPS sensor connected to a PC through a simple C++ code. The development of the proposed driving cycle represents the first model driving cycle in the city of Basra. The advisor software package is used to investigate the economic performance of the internal combustion engine based on HC, CO, and NOx exhaust emissions. It was found that the obtained driving cycle is significantly different than the other driving cycles in terms of exhaust emissions and fuel consumption and within the expected range of emissions. The developed driving cycle model obtained is a representative delicate estimation of the exhaust emissions and fuel consumption, and will be utilized for future work to obtain a good performance of the hybrid electric vehicles.  


Author(s):  
Jakub Lasocki

The World-wide harmonised Light-duty Test Cycle (WLTC) was developed internationally for the determination of pollutant emission and fuel consumption from combustion engines of light-duty vehicles. It replaced the New European Driving Cycle (NEDC) used in the European Union (EU) for type-approval testing purposes. This paper presents an extensive comparison of the WLTC and NEDC. The main specifications of both driving cycles are provided, and their advantages and limitations are analysed. The WLTC, compared to the NEDC, is more dynamic, covers a broader spectrum of engine working states and is more realistic in simulating typical real-world driving conditions. The expected impact of the WLTC on vehicle engine performance characteristics is discussed. It is further illustrated by a case study on two light-duty vehicles tested in the WLTC and NEDC. Findings from the investigation demonstrated that the driving cycle has a strong impact on the performance characteristics of the vehicle combustion engine. For the vehicles tested, the average engine speed, engine torque and fuel flow rate measured over the WLTC are higher than those measured over the NEDC. The opposite trend is observed in terms of fuel economy (expressed in l/100 km); the first vehicle achieved a 9% reduction, while the second – a 3% increase when switching from NEDC to WLTC. Several factors potentially contributing to this discrepancy have been pointed out. The implementation of the WLTC in the EU will force vehicle manufacturers to optimise engine control strategy according to the operating range of the new driving cycle.


2019 ◽  
Vol 113 ◽  
pp. 03020
Author(s):  
Vittorio Usai ◽  
Silvia Marelli ◽  
Avinash Renuke ◽  
Alberto Traverso

The reduction of CO2 and, more generally, GHG (Green House Gases) emissions imposed by the European Commission (EC) and the Environmental Protection Agency (EPA) for passenger cars has driven the automotive industry to develop technological solutions to limit exhaust emissions and fuel consumption, without compromising vehicle performance and drivability. In a mid-term scenario, hybrid powertrain and Internal Combustion Engine (ICE) downsizing represent the present trend in vehicle technology to reduce fuel consumption and CO2 emissions. Concerning downsizing concept, to maintain a reasonable power level in small engines, the application of turbocharging is mandatory for both Spark Ignition (SI) and Diesel engines. Following this aspect, the possibility to recover the residual energy of the exhaust gases is becoming more and more attractive, as demonstrated by several studies around the world. One method to recover exhaust gas energy from ICEs is the adoption of turbo-compounding technology to recover sensible energy left in the exhaust gas by-passed through the waste-gate valve. In the paper, an innovative option of advanced boosting system is investigated through a bladeless micro expander, promising attractive cost-competitiveness. The numerical activity was developed on the basis of experimental data measured on a waste-gated turbocharger for downsized SI automotive engines. To this aim, mass flow rate through the by-pass valve and the turbine impeller was measured for different waste-gate settings in steady-state conditions at the turbocharger test bench of the University of Genoa. The paper shows that significant electrical power can be harvested from the waste-gate gases, up to 94 % of compressor power, contributing to fuel consumption reduction.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3064 ◽  
Author(s):  
José Huertas ◽  
Michael Giraldo ◽  
Luis Quirama ◽  
Jenny Díaz

Type-approval driving cycles currently available, such as the Federal Test Procedure (FTP) and the Worldwide harmonized Light vehicles Test Cycle (WLTC), cannot be used to estimate real fuel consumption nor emissions from vehicles in a region of interest because they do not describe its local driving pattern. We defined a driving cycle (DC) as the time series of speeds that when reproduced by a vehicle, the resulting fuel consumption and emissions are similar to the average fuel consumption and emissions of all vehicles of the same technology driven in that region. We also declared that the driving pattern can be described by a set of characteristic parameters (CPs) such as mean speed, positive kinetic energy and percentage of idling time. Then, we proposed a method to construct those local DC that use fuel consumption as criterion. We hypothesized that by using this criterion, the resulting DC describes, implicitly, the driving pattern in that region. Aiming to demonstrate this hypothesis, we monitored the location, speed, altitude, and fuel consumption of a fleet of 15 vehicles of similar technology, during 8 months of normal operation, in four regions with diverse topography, traveling on roads with diverse level of service. In every region, we considered 1000 instances of samples made of m trips, where m varied from 4 to 40. We found that the CPs of the local driving cycle constructed using the fuel-based method exhibit small relative differences (<15%) with respect to the CPs that describe the driving patterns in that region. This result demonstrates the hypothesis that using the fuel based method the resulting local DC exhibits CPs similar to the CPs that describe the driving pattern of the region under study.


2018 ◽  
Author(s):  
Souvik Singh Rathore ◽  
Anand Singh ◽  
Prashant Kumar ◽  
Nazish Alam ◽  
Mithilesh Kumar Sahu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document