Insight From Recent Experimental and Empirical-Model Studies on Flow-Regime Characteristics in Debris Bed Formation Behavior

2018 ◽  
Vol 4 (3) ◽  
Author(s):  
Songbai Cheng ◽  
Ting Zhang ◽  
Jinjiang Cui ◽  
Pengfeng Gong ◽  
Yujia Qian

Studies on debris bed formation behavior are important for improved evaluation of core relocation and debris bed coolability that might be encountered in a core disruptive accident (CDA) of sodium-cooled fast reactors (SFR). Motivated to clarify the flow-regime characteristics underlying this behavior, both experimental investigations and empirical-model development are being performed at the Sun Yat-sen University in China. As for the experimental study, several series of simulated experiments are being conducted by discharging various solid particles into water pools. To obtain a comprehensive understanding, a variety of experimental parameters, including particle size (0.000125– 0.008 m), particle density (glass, aluminum, alumina, zirconia, steel, copper, and lead), particle shape (spherical and nonspherical), and water depth (0–0.8 m) along with the particle release pipe diameter (0.01–0.04 m) were varied. It is found that due to the different interaction mechanisms between solid particles and water pool, four kinds of flow regimes, termed, respectively, as the particle-suspension regime, the pool-convection dominant regime, the transitional regime, and the particle-inertia dominant regime, were identifiable. As for the empirical-model development, aside from a base model which is restricted to predictions of spherical particles, in this paper considerations on how to cover more realistic conditions (esp. debris of nonspherical shapes) are also discussed. It is shown that by coupling the base model with an extension scheme, respectable agreement between experiments and model predictions for regime transition can be achieved for both spherical and nonspherical particles given our current range of conditions.

Author(s):  
Songbai Cheng ◽  
Ting Zhang ◽  
Shixian Wang ◽  
Guangyu Jiang ◽  
Shaopeng Lin ◽  
...  

Studies on debris bed formation behavior are of crucial importance for the improved evaluation of core relocation and debris bed coolability that might be encountered in a Core Disruptive Accident (CDA) of Sodium-cooled Fast Reactors (SFR). Motivated to clarify the characteristics of flow regimes underlying this behavior, both experimental investigations and empirical-model development are being performed at the Sun Yat-sen University. As for the experimental study, several series of simulated experiments are being conducted by discharging various solid particles into water pools. To obtain a comprehensive understanding, a variety of experimental parameters, including particle size (0.256∼8mm), particle density (glass, alumina, zirconia, steel and lead), particle shape (spherical and irregularly-shaped), water depth (0∼60cm), particle release pipe diameter (10∼30mm) as well as the particle release height (110∼130cm) were varied. It is found that due to the different interaction mechanisms between solid particles and water pool, four kinds of flow regimes, termed respectively as the particle-suspension regime, the pool-convection dominant regime, the transitional regime and the particle-inertial dominant regime, were identifiable. As for the empirical-model development, by using dimensional analysis technique, a regime map (base map), which is restricted to predictions of spherical particles up until now, was recently suggested. It is shown that a respectable agreement between experiments and the regime-map predictions could be obtained. This work, which gives a large palette of favorable data and insight for a better understanding and an improved estimation of CDAs in SFRs, is expected to benefit future analyses and verifications of SFR severe accident analysis codes in China.


2020 ◽  
Author(s):  
Onno J. I. Kramer ◽  
Peter J. de Moel ◽  
Shravan K. R. Raaghav ◽  
Eric T. Baars ◽  
Wim H. van Vugt ◽  
...  

Abstract. Natural particles are frequently applied in drinking water treatment processes in fixed bed reactors, in fluidised bed reactors, and in sedimentation processes to clarify water and to concentrate solids. When particles settle, it has been found that in terms of hydraulics, natural particles behave differently when compared to perfectly round spheres. To estimate the terminal settling velocity of single solid particles in a liquid system, a comprehensive collection of equations is available. For perfectly round spheres, the settling velocity can be calculated quite accurately. However, for naturally polydisperse non-spherical particles, experimentally measured settling velocities of individual particles show considerable spread from the calculated average values. This work aimed to analyse and explain the different causes of this spread. To this end, terminal settling experiments were conducted in a quiescent fluid with particles varying in density, size and shape. For the settling experiments, opaque and transparent spherical polydisperse and monodisperse glass beads were selected. In this study, we also examined drinking water related particles, like calcite pellets and crushed calcite seeding material grains, both applied in drinking water softening. Polydisperse calcite pellets were sieved and separated to acquire more uniformly dispersed samples. In addition, a wide variety of grains with different densities, sizes and shapes were investigated for their terminal settling velocity and behaviour. The derived drag coefficient was compared with well-known models such as Brown–Lawler. A sensitivity analysis showed that the spread is caused to a lesser extent by variations in fluid properties, measurement errors and wall effects. Natural variations in specific particle density, path trajectory instabilities and distinctive multi-particle settling behaviour caused a slightly larger degree of spread. In contrast, greater spread is caused by variations in particle size, shape and orientation.


2011 ◽  
Vol 9 (5) ◽  
pp. 1179-1192 ◽  
Author(s):  
Takaji Inamuro ◽  
Hirofumi Hayashi ◽  
Masahiro Koshiyama

AbstractThe lattice Boltzmann method (LBM) for multicomponent immiscible fluids is applied to the simulations of solid-fluid mixture flows including spherical or non-spherical particles in a square pipe at Reynolds numbers of about 100. A spherical solid particle is modeled by a droplet with strong interfacial tension and large viscosity, and consequently there is no need to track the moving solid-liquid boundary explicitly. Nonspherical (discoid, flat discoid, and biconcave discoid) solid particles are made by applying artificial forces to the spherical droplet. It is found that the spherical particle moves straightly along a stable position between the wall and the center of the pipe (the Segré-Silberberg effect). On the other hand, the biconcave discoid particle moves along a periodic helical path around the center of the pipe with changing its orientation, and the radius of the helical path and the polar angle of the orientation increase as the hollow of the concave becomes large.


2021 ◽  
Vol 14 (1) ◽  
pp. 53-71
Author(s):  
Onno J. I. Kramer ◽  
Peter J. de Moel ◽  
Shravan K. R. Raaghav ◽  
Eric T. Baars ◽  
Wim H. van Vugt ◽  
...  

Abstract. Natural particles are frequently applied in drinking water treatment processes in fixed bed reactors, fluidised bed reactors, and sedimentation processes to clarify water and to concentrate solids. When particles settle, it has been found that, in terms of hydraulics, natural particles behave differently when compared to perfectly round spheres. To estimate the terminal settling velocity of single solid particles in a liquid system, a comprehensive collection of equations is available. For perfectly round spheres, the settling velocity can be calculated quite accurately. However, for naturally polydisperse non-spherical particles, experimentally measured settling velocities of individual particles show considerable spread from the calculated average values. This work aims to analyse and explain the different causes of this spread. To this end, terminal settling experiments were conducted in a quiescent fluid with particles varying in density, size, and shape. For the settling experiments, opaque and transparent spherical polydisperse and monodisperse glass beads were selected. In this study, we also examined drinking-water-related particles, like calcite pellets and crushed calcite seeding material grains, which are both applied in drinking water softening. Polydisperse calcite pellets were sieved and separated to acquire more uniformly dispersed samples. In addition, a wide variety of grains with different densities, sizes, and shapes were investigated for their terminal settling velocity and behaviour. The derived drag coefficient was compared with well-known models such as the one of Brown and Lawler (2003). A sensitivity analysis showed that the spread is caused, to a lesser extent, by variations in fluid properties, measurement errors, and wall effects. Natural variations in specific particle density, path trajectory instabilities, and distinctive multi-particle settling behaviour caused a slightly larger degree of the spread. In contrast, a greater spread is caused by variations in particle size, shape, and orientation. In terms of robust process designs and adequate process optimisation for fluidisation and sedimentation of natural granules, it is therefore crucial to take into consideration the influence of the natural variations in the settling velocity when using predictive models of round spheres.


2018 ◽  
Vol 50 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Songbai Cheng ◽  
Pengfeng Gong ◽  
Shixian Wang ◽  
Jinjiang Cui ◽  
Yujia Qian ◽  
...  

Author(s):  
Moritz Buchholz ◽  
Johannes Haus ◽  
Fritz Polt ◽  
Swantje Pietsch ◽  
Michael Schönherr ◽  
...  

2021 ◽  
Author(s):  
Silin Jing ◽  
Xianzhi Song ◽  
Zhaopeng Zhu ◽  
Buwen Yu ◽  
Shiming Duan

Abstract Accurate description of cuttings slippage in the gas-liquid phase is of great significance for wellbore cleaning and the control accuracy of bottom hole pressure during MPD. In this study, the wellbore bubble flow environment was simulated by a constant pressure air pump and the transparent wellbore, and the settling characteristics of spherical particles under different gas volume concentrations were recorded and analyzed by highspeed photography. A total of 225 tests were conducted to analyze the influence of particle diameter (1–12mm), particle density (2700–7860kg/m^3), liquid viscosity and bubble volume concentration on particle settling velocity. Gas drag force is defined to quantitatively evaluate the bubble’s resistance to particle slippage. The relationship between bubble drag coefficient and particle Reynolds number is obtained by fitting the experimental results. An explicit settling velocity equation is established by introducing Archimedes number. This explicit equation with an average relative error of only 8.09% can directly predict the terminal settling velocity of the sphere in bubble containing Newtonian fluids. The models for predicting bubble drag coefficient and the terminal settling velocity are valid with particle Reynolds number ranging from 0.05 to 167 and bubble volume concentration ranging from 3.0% to 20.0%. Besides, a trial-and-error procedure and an illustrative example are presented to show how to calculate bubble drag coefficient and settling velocity in bubble containing fluids. The results of this study will provide the theoretical basis for wellbore cleaning and accurate downhole pressure to further improve the performance of MPD in treating gas influx.


Author(s):  
J. R. Tucker ◽  
L. J. Shadle ◽  
S. Benyahia ◽  
J. Mei ◽  
C. Guenther ◽  
...  

Useful prediction of the kinematics, dynamics, and chemistry of a system relies on precision and accuracy in the quantification of component properties, operating mechanisms, and collected data. In an attempt to emphasize, rather than gloss over, the benefit of proper characterization to fundamental investigations of multiphase systems incorporating solid particles, a set of procedures were developed and implemented for the purpose of providing a revised methodology having the desirable attributes of reduced uncertainty, expanded relevance and detail, and higher throughput. Better, faster, cheaper characterization of multiphase systems result. Methodologies are presented to characterize particle size, shape, size distribution, density (particle, skeletal and bulk), minimum fluidization velocity, void fraction, particle porosity, and assignment within the Geldart Classification. A novel form of the Ergun equation was used to determine the bulk void fractions and particle density. Accuracy of properties-characterization methodology was validated on materials of known properties prior to testing materials of unknown properties. Several of the standard present-day techniques were scrutinized and improved upon where appropriate. Validity, accuracy, and repeatability were assessed for the procedures presented and deemed higher than present-day techniques. A database of over seventy materials has been developed to assist in model validation efforts and future designs.


Author(s):  
Mohammad Sheikh Mamoo ◽  
Ataallah Soltani Goharrizi ◽  
Bahador Abolpour

Erosion caused by solid particles in curve pipes is one of the major concerns in the oil and gas industries. Small solid particles flow with a carrier liquid fluid and impact the inner wall of the piping, valves, and other equipment. These components face a high risk of solid particle erosion due to the constant collision, which may result in equipment malfunctioning and even failure. In this study, the two-way coupled Eulerian-Lagrangian method with the Oka erosion and Grant and Tabakoff particle-wall rebound models approach is employed to simulate the liquid-solid flow in U-bend and helical pipes using computational fluid dynamics. The effects of operating parameters (inlet fluid velocity and temperature, particle density and diameter, and mass flow rate) and design parameters (mean curvature radius/pipe diameter ratio) are investigated on the erosion of these tubes walls. It is obtained that increasing the fluid velocity and temperature, particle mass flow and particle density increase the penetration rate, particle diameter affects the rate of penetration, and increasing mean curvature radius/pipe diameter ratio decreases the rate of penetration.


Sign in / Sign up

Export Citation Format

Share Document